K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

Đề có sai không vậy bạn?

Phải là \(4\left(\sqrt{5}+1\right)\) chứ

13 tháng 12 2017

k có sai đâu bn giải giúp mk vs

14 tháng 12 2017

\(x=\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\)

\(\Leftrightarrow x^3=4\left(\sqrt{5}+1\right)-4\left(\sqrt{5}-1\right)-3.\sqrt[3]{4\left(\sqrt{5}+1\right).4\left(\sqrt{5}-1\right)}x\)

\(\Leftrightarrow x^3=8-3.\sqrt[3]{4^2.\left(5-1\right)}x\)

\(\Leftrightarrow x^3=8-3.4x=8-12x\)

\(\Rightarrow M=\left(x^3+12x-9\right)^{2014}=\left(8-12x+12x-9\right)^{2014}=\left(-1\right)^{2014}=1\)

16 tháng 6 2021

`x=\root{3}{4(\sqrt5+1)}-\root{3}{4(\sqrt5-1)}`

`<=>x^3=4(sqrt5+1)-4(\sqrt5-1)-3\root{3}{16(5-1)}(\root{3}{4(\sqrt5+1)}-\root{3}{4(\sqrt5-1)})`

`<=>x^3=4\sqrt5+4-4sqrt5+4-3\root{3}{64}x`

`<=>x^3=8-12x`

`<=>x^3+12x-8=0`

`=>P=(x^3+12-8-1)^2021=(-1)^2021=-1`

*Có gì khum hiểu comment bên dưới.

21 tháng 6 2021

`a)(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)/(3-sqrtx)(x>=0,x ne 4,x ne 9)`

`=(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)+(2sqrtx+1)/(sqrtx-3)`

`=(2sqrtx-9+(sqrtx-3)(sqrtx+3)+(2sqrtx+1)(sqrtx-2))/(x-5sqrtx+6)`

`=(2sqrtx-9+x-9+2x-3sqrtx-2)/(x-5sqrtx+6)`

`=(3x-sqrtx-20)/

21 tháng 6 2021

Lỗi nhẹ :v

22 tháng 12 2020

ối lắm thế :((

3.

a/ Giả sử đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số tỉ lệ là k

=> y = k/x

Thay x = 8 ; y = 15 vào ct y = k/x ta có

\(\dfrac{k}{8}=15\Rightarrow k=120\)

Thay \(k=120\) vào ct \(y=\dfrac{k}{x}\) ta có

\(y=\dfrac{120}{x}\)

b/ Thay x = 6 vào ct \(y=\dfrac{120}{x}\) ta có

\(y=\dfrac{120}{6}=20\)

Thay x = - 10 vào ct \(y=\dfrac{120}{x}\) ta có

\(y=\dfrac{120}{-10}=-12\)

b/ Thay y = 2 vào ct \(y=\dfrac{120}{x}\) ta có

\(2=\dfrac{120}{x}\Rightarrow x=60\)

Thay y = - 30 vào ct \(y=\dfrac{120}{x}\) ta có

\(-30=\dfrac{120}{x}\Rightarrow x=-4\)

4/

a/ Giả sử đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ là k

=> y = xk

Thay y = 4 ; x = 6 vào ct y = xk ta có

\(4=6k\Rightarrow k=\dfrac{2}{3}\)

Thay \(k=\dfrac{2}{3}\) vào ct y = xk ta có

\(y=\dfrac{2}{3}x\)

b/ Thay x = 9 vào ct \(y=\dfrac{2}{3}x\)  ta có

\(y=\dfrac{2}{3}.9=6\)

Thay y = - 8 vào ct \(y=\dfrac{2}{3}x\) ta có

\(-8=\dfrac{2}{3}x\Rightarrow x=-12\)

 

22 tháng 12 2020

=(( biết căn bậc hai x=9 nhưng khum biết trình bày,huhu

 

 

15 tháng 6 2016

http://olm.vn/hoi-dap/question/104313.html

coi hỉu j ko tui đang mò

4 tháng 9 2023

a) Để tính giá trị của biểu thức P=(x^3+12x−9)^{2005}=(√3+12√−9)^{2005} với x=3√4(√5+1)−3√4(√5−1). Đầu tiên, ta thay x bằng giá trị đã cho vào biểu thức P: P=(3√4(√5+1)−3√4(√5−1))^3+12(3√4(√5+1)−3√4(√5−1))−9)^{2005} Tiếp theo, ta thực hiện các phép tính để đơn giản hóa biểu thức: P=(4(5+1)^{1/2}−4(5−1)^{1/2})^3+12(4(5+1)^{1/2}−4(5−1)^{1/2})−9)^{2005} =(4√6−4√4)^3+12(4√6−4√4)−9)^{2005} =(4√6−8)^3+12(4√6−8)−9)^{2005} =(64√6−192+96√6−96−9)^{2005} =(160√6−297)^{2005} ≈ 1.332 × 10^3975

b) Để tính giá trị của biểu thức Q=x^3+ax+b=√3+√a+√b^2+√a^3+√3+√a−√b^2+√a^3 với x=3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27). Tương tự như trên, ta thay x bằng giá trị đã cho vào biểu thức Q: Q=(3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27))^3+a(3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27))+b Tiếp theo, ta thực hiện các phép tính để đơn giản hóa biểu thức: Q=(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))^3+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b ≈ −b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b

NV
6 tháng 7 2020

ĐKXĐ: ...

\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2}{x}-\frac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\frac{\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{x\left(\sqrt{x}+1\right)}{\left(x+2\sqrt{x}\right)}=\frac{x}{\sqrt{x}-1}\)

\(x=\frac{2}{2-\sqrt{3}}=\frac{4}{4-2\sqrt{3}}=\left(\frac{2}{\sqrt{3}-1}\right)^2\)

\(\Rightarrow P=\frac{\frac{2}{2-\sqrt{3}}}{\frac{2}{\sqrt{3}-1}-1}=\frac{\frac{2}{2-\sqrt{3}}}{\frac{3-\sqrt{3}}{\sqrt{3}-1}}=\frac{2}{2\sqrt{3}-3}\)

\(\sqrt{P}\) xác định khi \(x>1\)

Khi đó: \(\sqrt{P}=\sqrt{\frac{x}{\sqrt{x}-1}}=\sqrt{\frac{x}{\sqrt{x}-1}-4+4}=\sqrt{\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge2\)

\(\sqrt{P}_{min}=2\) khi \(x=4\)