Chứng minh rằng f(x)=f(-x) với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = ax2 + bx + c
vì f(5) = f(-5) nên 25a2 + 5b + c = 25a2 - 5b + c
suy ra : 5b = -5b ; 5b + 5b = 0 ; 10b = 0 ; b = 0
Vậy f(x) = ax2 + c .
Ta có f(-x) = a(-x)2 + c = ax2 + c
do đó f(x) = f(-x)
f(x) = ax
2 + bx + c
vì f(5) = f(-5) nên 25a
2 + 5b + c = 25a
2
- 5b + c
suy ra : 5b = -5b ; 5b + 5b = 0 ; 10b = 0 ; b = 0
Vậy f(x) = ax
2 + c .
Ta có f(-x) = a(-x)2 + c = ax
2 + c
do đó f(x) = f(-x)
Thay x=1 ta được
(1-1).f(1)=(1+4).f(1+8)
<=>5.f(9)=0
<=>f(9)=0
suy ra 9 là nghiệm của f(x)
Thay x=-4 ta được:
(-4-1).f(-4)=(-4+4).F(-4+8)
<=>-5.f(-4)=0
<=>f(-4)=0
suy ra -4 là nghiệm của f(x)
Vậy f(x) có ít nhất 2 nghiệm là -4 và 9
Ko có điều kiện gì thêm ak( VD: x^2...) Nếu ko có thêm điều kiện thì đề sai nhé
ví dụ:
f(x) = ax^2 + bx + c (a # 0)
ta có f(5) = f(-5) <> 25a + 5b + c = 25a - 5b + c => b = 0
vậy => f(x) = ax^2 + c và f(-x) = ax^2 + c
=> f(x) = f(-x) với mọi x