K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(P=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{11}\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\cdot\dfrac{-10}{11}\)

\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{9}{10}\cdot\dfrac{10}{11}\)

\(=\dfrac{1}{11}\)

 

13 tháng 3 2022

5

13 tháng 3 2022

lên tra google

Số nghịch đảo của 1 là 1

Số nghịch đảo của -1 là -1

Số nghịch đảo của -5 là -1/5

Số nghịch đảo của 7 là 1/7

Số nghịch đảo của -3/4 là -4/3

Số nghịch đảo là 1/-15 là -15

Số nghịch đảo của -2/-7 là 7/2

Số nghịch đảo của -2/19 là -19/2

22 tháng 7 2023

a) \(\dfrac{1}{2}:y\times\dfrac{3}{5}=\dfrac{4}{3}+\dfrac{3}{4}\)

\(\dfrac{1}{2}:y\times\dfrac{3}{5}=\dfrac{25}{12}\)

\(\dfrac{1}{2}:y=\dfrac{25}{12}:\dfrac{3}{5}\)

\(\dfrac{1}{2}:y=\dfrac{125}{36}\)

\(y=\dfrac{1}{2}:\dfrac{125}{36}\)

\(y=\dfrac{18}{125}\)

b) \(\dfrac{4}{3}-\dfrac{1}{2}\times y=1\)

\(\dfrac{1}{2}\times y=\dfrac{4}{3}-1\)

\(\dfrac{1}{2}\times y=\dfrac{1}{3}\)

\(y=\dfrac{1}{3}:\dfrac{1}{2}\)

\(y=\dfrac{2}{3}\)

c) \(\dfrac{1}{4}+y:\dfrac{1}{3}=\dfrac{5}{6}\)

\(y:\dfrac{1}{3}=\dfrac{5}{6}-\dfrac{1}{4}\)

\(y:\dfrac{1}{3}=\dfrac{7}{12}\)

\(y=\dfrac{7}{12}\cdot\dfrac{1}{3}\)

\(y=\dfrac{7}{36}\)

1: Sai

2: Sai

3: Đúng

4: Đúng

AH
Akai Haruma
Giáo viên
22 tháng 2 2021

Lời giải:

1. Đúng

2. Sai

3. Đúng

4. Đúng

8 tháng 6 2021

a,\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)

\(\dfrac{6}{2x+1}=\dfrac{6}{21}\)

\(2x+1=21\)

\(2x=21-1\)

\(2x=20\)

\(x=10\)

 

11 tháng 10 2023

b:

ĐKXĐ: x<>0

 \(\dfrac{2}{x}+\dfrac{y}{3}=\dfrac{1}{6}\)

=>\(\dfrac{6+xy}{3x}=\dfrac{1}{6}\)

=>\(6\left(6+xy\right)=3x\)

=>\(x=2\left(6+xy\right)=12+2xy\)

=>\(x\left(1-2y\right)=12\)

mà x,y là các số nguyên

nên \(\left(x;1-2y\right)\in\left\{\left(12;1\right);\left(-12;-1\right);\left(4;3\right);\left(-4;-3\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(12;0\right);\left(-12;1\right);\left(4;-1\right);\left(-4;2\right)\right\}\)

c: ĐKXĐ: y<>-1

\(\dfrac{x}{3}+\dfrac{1}{y+1}=\dfrac{1}{6}\)

=>\(\dfrac{xy+x+3}{3\left(y+1\right)}=\dfrac{1}{6}\)

=>\(\dfrac{2\left(xy+x+3\right)}{6\left(y+1\right)}=\dfrac{y+1}{6\left(y+1\right)}\)

=>\(2xy+2x+6=y+1\)

=>\(2x\left(y+1\right)-\left(y+1\right)=-6\)

=>\(\left(2x-1\right)\left(y+1\right)=-6\)

mà x,y là các số nguyên

nên \(\left(2x-1;y+1\right)\in\left\{\left(1;-6\right);\left(-1;6\right);\left(3;-2\right);\left(-3;2\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(1;-7\right);\left(0;5\right);\left(2;-3\right);\left(-1;1\right)\right\}\)

25 tháng 7 2023

Bài 3 :

\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)

\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)

\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)

\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)

.....

\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)

\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)

25 tháng 7 2023

Bạn xem lại đề 2, phần mẫu của N