K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

áp dụng Bđt AM- GM:

\(T=a+b+c+\dfrac{1}{abc}\ge4\cdot\sqrt[4]{\dfrac{abc}{abc}}=4\)

vậy T đạt giá trị nhỏ nhất bằng 4 \(\Leftrightarrow a=b=c=\dfrac{1}{abc}=1\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)

\(a^2+b^2+c^2=1\)

=> ......** không tồn tại a,b,c sao cho a^2 + b^2 + c^2 =1 để T đạt gtnn, đúng ko ta?? tớ nghĩ thế.**

16 tháng 12 2017

Ôn tập Căn bậc hai. Căn bậc ba

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

*** $a,b,c>0$ thôi chứ không lớn hơn $1$ bạn nhé. $a,b,c>1$ thì $abc>1$ mất rồi.

-----------------------

Vì $a, b, c>0$ thỏa mãn $abc=1$ nên tồn tại $x,y,z>0$ sao cho:

$(a,b,c)=(\frac{x^2}{yz}, \frac{y^2}{xz}, \frac{z^2}{xy})$
Khi đó, áp dụng BĐT Cauchy_Schwarz:
$P=\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}$

$\geq \frac{(x+y+z)^2}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{(x+y+z)^2}{(x+y+z)^2}=1$

Vậy $P_{\min}=1$ khi $x=y=z\Leftrightarrow a=b=c=1$

12 tháng 12 2017

kết quả là 7290 thôi

2 tháng 1 2022

Ta có \(a^2+\dfrac{1}{b+c}=a^2+\dfrac{1}{6-a}\)

Mà \(a+b+c=6\Rightarrow0\le a,b,c\le2\)

\(\Rightarrow a^2+\dfrac{1}{6-a}\ge2^2+\dfrac{1}{6-2}=\dfrac{17}{4}\)

\(\Rightarrow P=\sum\sqrt{a^2+\dfrac{1}{b+c}}=\sum\sqrt{a^2+\dfrac{1}{6-a}}\ge\sqrt{\dfrac{17}{4}}+\sqrt{\dfrac{17}{4}}+\sqrt{\dfrac{17}{4}}=\dfrac{3\sqrt{17}}{2}\)

Dấu \("="\Leftrightarrow a=b=c=2\)

2 tháng 1 2022

a + b + c >= 6 chứ có phải a + b + c = 6 đâu ạ?

NV
14 tháng 1 2024

Đây là bài sử dụng Cô-si ngược dấu đặc trưng:

\(\dfrac{1}{a^2+1}=\dfrac{a^2+1-a^2}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)

Tương tự: \(\dfrac{1}{b^2+1}\ge1-\dfrac{b}{2}\)

\(\dfrac{1}{c^2+1}\ge1-\dfrac{c}{2}\)

Cộng vế:

\(P\ge3-\dfrac{a+b+c}{2}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
25 tháng 5 2023

Lời giải:

Áp dụng BĐT Cauchy-Schwarz và AM-GM:

$M=\frac{b^2+c^2}{a^2}+a^2(\frac{1}{b^2}+\frac{1}{c^2})$

$\geq \frac{b^2+c^2}{a^2}+a^2.\frac{4}{b^2+c^2}$

$=(\frac{b^2+c^2}{a^2}+\frac{a^2}{b^2+c^2})+\frac{3a^2}{b^2+c^2}$

$\geq \sqrt{\frac{b^2+c^2}{a^2}.\frac{a^2}{b^2+c^2}}+\frac{3(b^2+c^2)}{b^2+c^2}$

$=2+3=5$

Vậy $M_{\min}=5$ 

AH
Akai Haruma
Giáo viên
17 tháng 4 2021

Lời giải:

Xét:

$\frac{a}{a^2+1}-\left(\frac{16}{25}-\frac{3}{25}a\right)=\frac{(a-2)^2(3a-4)}{25(a^2+1)}\geq 0$ với mọi $a\geq \frac{4}{3}$

$\Rightarrow \frac{a}{a^2+1}\geq \frac{16}{25}-\frac{3}{25}a$

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế, suy ra:

$A\geq \frac{48}{25}-\frac{3}{25}(a+b+c)=\frac{6}{5}$

Vậy $A_{\min}=\frac{6}{5}$.

Giá trị này đạt tại $a=b=c=2$

 

có cách nào không gượng ép như thế này không ạ

kiểu như phân tích chọn điểm rơi để tìm cách thêm bớt ấy ạ

12 tháng 4 2021

\(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}=2\)

=> \(\dfrac{1}{a+1}=1-\dfrac{1}{b+1}+1-\dfrac{1}{c+1}=\dfrac{b}{b+1}+\dfrac{c}{c+1}\ge2\sqrt{\dfrac{bc}{\left(b+1\right)\left(c+1\right)}}\)( AM-GM)

Tương tự ta có \(\dfrac{1}{b+1}\ge2\sqrt{\dfrac{ac}{\left(a+1\right)\left(c+1\right)}}\)\(\dfrac{1}{c+1}\ge2\sqrt{\dfrac{ab}{\left(a+1\right)\left(b+1\right)}}\)

Nhân vế với vế các bđt trên

=> \(\dfrac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge8\sqrt{\dfrac{a^2b^2c^2}{\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2}}=8\cdot\dfrac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

=> \(1\le8abc\)<=> \(abc\le\dfrac{1}{8}\)

Đẳng thức xảy ra <=> a=b=c=1/2

12 tháng 4 2021

ý quên thiếu KL

Vậy MaxP = 1/8 <=> a=b=c=1/2