K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2017

P - 3abc = (a+b)(b+c)(a+c)+abc - 3abc

= (a+b+c-c)(b+c)(a+c) - 2abc

= (a+b+c)(b+c)(a+c) - c(b+c)(a+c) - 2abc

= (a+b+c)(b+c)(c+a) - c(ab + bc +ac +c2) - 2abc

= (a+b+c)(b+c)(a+c) - c( ab +bc + ac +c2+ 2ab)

= (a+b+c)(b+c)(c+a) - c[(bc+c2+ac) + 3ab]

= (a+b+c)(b+c)(c+a) - c[c(b+c+a) + 3ab]

= (a+b+c)(b+c)(c+a) - c²(a+b+c) - 3abc

Ta có: a + b + c chia hết cho 6

⇒mà 6 ⋮ 2

⇒ a+b+c chia hết cho 2

⇒ a+b+c là số chẵn

⇒ trong 3 số a, b, c phải có ít nhất một số chẳn
⇒ abc ⋮ 2

⇒ 3abc ⋮ 6

mà a+b+c chia hết cho 6

⇒ (a+b+c)(b+c)(c+a) chia hết cho 6

c²(a+b+c) chia hết cho 6

⇒ (a+b+c)(b+c)(c+a) - c²(a+b+c) - 3abc chia hết cho 6

Vậy P - 3abc chia hết cho 6.

8 tháng 8 2018

a, \(\left(5n+2\right)^2-4=\left(5n+2-2\right)\left(5n+2+2\right)=5n\left(5n+4\right)⋮5\)

b, \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)

Vì (n-1)n(n+1) là tích 3 số nguyên liên tiếp

=>(n-1)n(n+1) chia hết cho 6 hay n^3-n chia hết cho 6

c, \(a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Rightarrow a^3+b^3-3abc=-c^3\)

=>a^3+b^3+c^3=3abc

20 tháng 2 2019

\(4x-xy+2y=3\)

\(\Rightarrow x\left(4-y\right)-8+2y=3-8\)

\(\Rightarrow x\left(4-y\right)-2\left(4-y\right)=-5\)

\(\Rightarrow\left(x-2\right)\left(4-y\right)=-5\)

\(\Rightarrow\left(x-2\right)\left(y-4\right)=5\)

\(\Rightarrow\left(x-2\right);\left(y-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Tự xét bảng

\(3y-xy-2x-5=0\)

\(\Rightarrow y\left(3-x\right)-2x=5\)

\(\Rightarrow y\left(3-x\right)+6-2x=5+6\)

\(\Rightarrow y\left(3-x\right)+2\left(3-x\right)=11\)

\(\Rightarrow\left(y+1\right)\left(3-x\right)=11\)

\(\Rightarrow\left(3-x\right);\left(y+1\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Tự xét

\(2xy-x-y=100\)

\(\Rightarrow x\left(2y-1\right)-y=100\)

\(2x\left(2y-1\right)-\left(2y-1\right)=100+1\)

\(\left(2x-1\right)\left(2y-1\right)=101\)

\(\Rightarrow\left(2x-1\right);\left(2y-1\right)\inƯ\left(101\right)=\left\{\pm1;\pm101\right\}\)

Tự xét bảng

P/s : bài 3 có gì sai ko ?

20 tháng 2 2019

bài 3 ko sai đâu

a: a^3-a=a(a^2-1)

=a(a-1)(a+1)

Vì a;a-1;a+1 là ba số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!=6

=>a^3-a chia hết cho 6

AH
Akai Haruma
Giáo viên
18 tháng 11 2018

Bạn xem lại đề bài. Nếu $a,b,c$ là 3 số lẻ thì $a^3+b^3+c^3$ lẻ nên không thể chia hết cho $6$

29 tháng 8 2020

Bg

a) Gọi số chẵn nhỏ nhất trong ba số chẵn liên tiếp là 2x   (x \(\inℤ\))

=> Tổng ba số chẵn liên tiếp = 2x + (2x + 2) + (2x + 4)

=> 2x + (2x + 2) + (2x + 4) = 2x + 2x + 2 + 2x + 4

=> 2x + (2x + 2) + (2x + 4) = (2x + 2x + 2x) + (2 + 4)

=> 2x + (2x + 2) + (2x + 4) = 2.3x + 6

=> 2x + (2x + 2) + (2x + 4) = 6x + 6.1

=> 2x + (2x + 2) + (2x + 4) = 6.(x + 1) \(⋮\)6

=> Tổng ba số tự nhiên liên tiếp chia hết cho 6

=> ĐPCM

b) Bg

Tổng ba số lẻ liên tiếp luôn là một số lẻ

Mà 6 chẵn

=> Tổng của ba số lẻ liên tiếp không chia hết cho 6

=> ĐPCM

c) Bg

Ta có: a \(⋮\)b và b \(⋮\)c      (a, b, c \(\inℤ\))

Vì a \(⋮\)

=> a = by    (bởi y \(\inℤ\))

Mà b \(⋮\)c

=> by \(⋮\)c

=> a \(⋮\)c

=> ĐPCM

d) Bg

Ta có: P = a + a2 + a3 +...+ a2n      (a, n\(\inℕ\))

=> P = (a + a2) + (a3 + a4)...+ (a2n - 1 + a2n

=> P = [a.(a + 1)] + [a3.(a + 1)] +...+ [a2n - 1.(a + 1)]

=> P = (a + 1).(a + a3 + a2n - 1\(⋮\)a + 1

=> P = a + a2 + a3 +...+ a2n  \(⋮\)a + 1

=> ĐPCM (Điều phải chứng mình)