tìm các giá trị của m để hai phương trình sau có ít nhất một nghiệm chung:
x2+2x+m=0 và x2+mx+2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x0 là nghiệm chung của hai phương trình
thì x0 phải thỏa mãn hai phương trình trên.
Thay x = x0 vào hai phương trình trên ta được
x 0 2 + m x 0 + 2 = 0 x 0 2 + 2 x 0 + m = 0
⇒ (m – 2)x0 + 2 – m = 0 ⇔ (m – 2)(x0 – 1) = 0
Nếu m = 2 thì 0 = 0 (luôn đúng) hay hai phương trình trùng nhau.
Lúc này phương trình x2 + 2x + 2 = 0 ⇔ (x + 1)2 = −1
vô nghiệm nên cả hai phương trình đều vô nghiệm
Vậy m = 2 không thỏa mãn.
Nếu m ≠ 2 thì x0 = 1
Thay x0 = 1 vào phương trình x02 + mx0 + 2 = 0
ta được 1 + m + 2 = 0 ⇔ m = −3
Vậy m = −3 thì hai phương trình có nghiệm chung
Đáp án cần chọn là: B
2.giải phương trình trên , ta được :
\(x_1=\frac{-m+\sqrt{m^2+4}}{2};x_2=\frac{-m-\sqrt{m^2+4}}{2}\)
Ta thấy x1 > x2 nên cần tìm m để x1 \(\ge\)2
Ta có : \(\frac{-m+\sqrt{m^2+4}}{2}\ge2\) \(\Leftrightarrow\sqrt{m^2+4}\ge m+4\)( 1 )
Nếu \(m\le-4\)thì ( 1 ) có VT > 0, VP < 0 nên ( 1 ) đúng
Nếu m > -4 thì ( 1 ) \(\Leftrightarrow m^2+4\ge m^2+8m+16\Leftrightarrow m\le\frac{-3}{2}\)
Ta được : \(-4< m\le\frac{-3}{2}\)
Tóm lại, giá trị phải tìm của m là \(m\le\frac{-3}{2}\)
Gọi x 0 là một nghiệm của phương trình x 2 - m x + 2 = 0
Suy ra 3 – x0 là một nghiệm của phương trình x 2 + 2 x - m = 0 .
Khi đó, ta có hệ
x 0 2 − m x 0 + 2 = 0 ( 3 − x 0 ) 2 + 2 ( 3 − x 0 ) − m = 0 ⇔ x 0 2 − m x 0 + 2 = 0 ( 1 ) m = x 0 2 − 8 x 0 + 15 ( 2 )
Thay (2) vào (1), ta được: x 0 2 − ( x 0 2 − 8 x 0 + 15 ) x 0 + 2 = 0 ⇔ x 0 = 2 x 0 = 7 ± 3 5 2 cho ta 3 giá trị của m cần tìm.
Đáp án cần chọn là: D
Gọi x0 là nghiệm chung của hai phương trình
thì x0 phải thỏa mãn hai phương trình trên:
Thay x = x0 vào hai phương trình trên ta được
x 0 2 + m x 0 + 1 = 0 x 0 2 + x 0 + m = 0
⇒ (m – 1)x0 + 1 – m = 0
⇔ (m – 1)(x0 – 1) = 0 (*)
Xét phương trình (*)
Nếu m = 1 thì 0 = 0 (luôn đúng)
hay hai phương trình trùng nhau
Lúc này phương trình x2 + x + 1 = 0
vô nghiệm nên cả hai phương trình đều vô nghiệm.
Vậy m = 1 không thỏa mãn.
+) Nếu m ≠ 1 thì x0 = 1
Thay x0 = 1 vào phương trình x02 + mx0 + 1 = 0 ta được m = −2
Thay m = −2 thì hai phương trình có nghiệm chung
Đáp án cần chọn là: D
Ptr có:`\Delta=(-m)^2-4(m-3)=m^2-4m+12=(m-2)^2+8 > 0 AA m`
`=>` Ptr luôn có nghiệm `AA m`
`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=m),(x_1.x_2=c/a=m-3):}`
Ta có:`A=2(x_1 ^2+x_2 ^2)-x_1.x_2`
`<=>A=2[(x_1+x_2)^2-2x_1.x_2]-x_1.x_2`
`<=>A=2[m^2-2(m-3)]-(m-3)`
`<=>A=2(m^2-2m+6)-m+3`
`<=>A=2m^2-4m+12-m+3=2m^2-5m+15`
`<=>A=2(m^2-5/2+15/2)`
`<=>A=2[(m-5/4)^2+95/16]`
`<=>A=2(m-5/4)^2+95/8`
Vì `2(m-5/4)^2 >= 0 AA m<=>2(m-5/4)^2+95/8 >= 95/8 AA m`
Hay `A >= 95/8 AA m`
Dấu "`=`" xảy ra`<=>(m-5/4)^2=0<=>m=5/4`
Vậy `GTN N` của `A` là `95/8` khi `m=5/4`
\(\Delta=\left(-m\right)^2-2.1.\left(m-1\right)\\ =m^2-2m+1\\ =\left(m-1\right)^2\)
Phương trình có hai nghiệm phân biệt :
\(\Leftrightarrow\Delta>0\\ \Rightarrow\left(m-1\right)^2>0\\ \Rightarrow m\ne1\)
Theo vi ét :
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(x^2_1+x^2_2=x_1+x_2\\ \Leftrightarrow x^2_1+x^2_2=m\\ \Leftrightarrow\left(x^2_1+2x_1x_2+x_2^2\right)-2x_1x_2=m\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-m=0\\ \Leftrightarrow m^2-2\left(m-1\right)-m=0\\ \Leftrightarrow m^2-2m+2-m=0\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=2\left(t/m\right)\end{matrix}\right.\)
Vậy \(m=2\)
Đáp án C
Giả sử hai phương trình đã cho có nghiệm phức chung z 0 khi đó ta có hệ phương trình:
TH1: Nếu m = -2 thì khi đó 2 phương trình trở thành: z 2 − 2 z + 2 = 0 trùng nhau nên có nghiệm chung.
TH2: Nếu z 0 = − 1 thay vào hệ ta được:
1 − m + 2 = 0 − 1 − 2 + m = 0 ⇔ m = 3 .
Vậy giá trị cần tìm là m = -2 và m = 3.
Với phương trình: \(x^2+mx+n=0\)
delta 1 = \(m^2-4n\) (1)
Với phương trình: \(x^2-2x-n=0\)
delta 2 = \(\left(-2\right)^2-4.\left(-n\right)=4+4n\) (2)
Lấy (1) + (2) được \(m^2+4>0\forall m,n\)
=> delta 1 hoặc 2 luôn có ít nhất một delta không âm hay:
Với mọi giá trị của m và n thì ít nhất một trong hai phương trình trên có nghiệm.
☕T.Lam