K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2021

AECF là hình bình hành => EN // AM

E là trung điểm của AB => N là trung điểm của BM, do đó MN = NB.

Tương tự, M là trung điểm của DN, do đó DM = MN.

a: Xét tứ giác DEBF có 

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

b: Xét ΔCDM có 

F là trung điểm của CD

FN//DM

Do đó: N là trung điểm của CM

Suy ra: NM=NC(1)

Xét ΔANB có

E là trung điểm của AB

EM//NB

Do đó: M là trung điểm của AN

Suy ra: AM=MN(2)

từ (1) và (2) suy ra AM=MN=NC

26 tháng 12 2020
Giúp mình đi mọi người

a: Xét tứ giác DEBF có 

BE//DF

BE=DF
Do đó: DEBF là hình bình hành

b: Xét ΔANB có 

E là trung điểm của AB

EM//NB

Do đó: M là trung điểm của AN

=>AM=MN(1)

Xét ΔMCD có 

F là trung điểm của CD

FN//DM

Do đó: N là trung điểm của CM

Suy ra: NC=NM(2)

Từ (1) và (2) suy ra AM=MN=NC

24 tháng 11 2021

ko biết

 

24 tháng 11 2021

cút mẹ mày đi

25 tháng 12 2021

Bài 8:

a: Xét tứ giác AEFD có 

AE//FD

AE=FD

Do đó: AEFD là hình bình hành

mà AE=AD

nên AEFD là hình thoi

25 tháng 12 2021

hình đâu

 

23 tháng 10 2021

a: Xét tứ giác DEBF có

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

10 tháng 9 2020

a/ 

AB=CD (cạnh đối của hbh)

AM=AB/2; CN=CD/2 

=> AM=CN (1)

AM thuộc AB; CN thuộc CD mà AB//CD => AM//CN (2)

Từ (1) và (2) => AMCN là hbh (Tứ giác có cặp cạnh đối // và = nhau là hbh)

b/ Gọi O là giao của AC và BD => O là trung điểm của AC và BD (hai đường chéo hbh cắt nhau tại trung điểm mỗi đường)

Xét tứ giác BNDM có

MB thuộc AB; DN thuộc CD mà AB//CD => MB//DN

AB=CD (cmt) mà MB=AB/2 và DN=CD/2 => MB=DN

=> Tứ giác BNDM là hbh

Gọi O' là giao của MN và BD => O' là trung điểm của BD

Mà O cũng là trung điểm của BD => O trùng O' => AC; BD; MN đồng quy

c/

AM//DN vì vậy ko cắt nhau bạn xem lại đề bài

10 tháng 9 2020

a) ABCD là hình bình hành nên AB//CD, AB=CD

Vì M,N lần lượt là trung điểm AB,CD nên \(\hept{\begin{cases}AM//CN\\AM=CN\left(=\frac{1}{2}AB=\frac{1}{2}DC\right)\end{cases}}\)

=> ANCM là hình bình hành.

b) Gọi O là giao điểm AC và BD

Mà ABCD là hình bình hành nên O trung điểm AC và BD

Vì ANCM là hình bình hành nên MN và AC cắt nhau tại trung điểm AC

=> MN qua O ---> ĐPCM

c) Câu này đề hơi sai nha, AM//DN nên ko có chuyện cắt nhau nha !!

Ở đây mình xin sửa đề lại là AN cắt DM tại E và CM cắt BN tại F.

Xét NE là đường trung bình tam giác DMC\(\Rightarrow\hept{\begin{cases}NE//MC\\NE=\frac{1}{2}MC\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}NE//MF\\NE=MF\left(=\frac{1}{2}MC\right)\end{cases}}\)---> Vậy NEMF là hình bình hành.

17 tháng 10 2015

a, Ta có:ABCD la hình bình hành=>AB=CD;AB//CD

mà E là trung diểm của AB;Flà trung điểm của CD

=>AE=EB=CF=DF(1)

VÌ AB//CD=>EB//DF(2)

Từ(1) và (2)=> EBFD là hình bình hành( theo dấu hiệu nhận biết hình bình hành)(đpcm)

b, Xét hbh ABCD có

AC cắt BD tại trung diểm củaAC và BD(1)

Xét hbh EBFD có EF cắt BD tại trung điểm của EF và BD(2)

từ (1) và (2)=>ba dường thang AC,BD,EF đồng quy

c,GỌI GIAO DIỂM CỦA AC,BD,EF LÀ O

Xét tam giác EOM và tam giác NOF có

góc EOM=góc NOF( đói đỉnh)

OE=OF(vi O là trung điểm cua EF)

goc MEF=góc NFE(vì CE//BF)

=>TAM GIAC EOM=TAMGIAC NOF

=.ME=NF(1)

TA CÓ ME//FN(2)

TU (1) VA(2)=>ENFM LA HBH