a)Thu gọn biểu thức A=( 5x-3)^2-2(5x+3)( x+3) +(x+3)^2
b) Phân tích đa thức thành nhân tử x^3 +5x^2 +6x
c) Tìm x cho biết :x^3 -3x^2 -4x +12=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A\left(x\right)=2x^4-x^3+3x^2+9x-2\)
\(B\left(x\right)=2x^4-5x^3-x+9\)
\(C\left(x\right)=x^4+4x^2+5\)
A(x): bậc 4; hệ số cao nhất là 2; hệ số tự do là -2
B(x): bậc 4; hệ số cao nhất là 4; hệ số tự do là 9
b: M(x)=A(x)+B(x)=4x^4-6x^3+3x^2+8x+7
N(x)=B(x)-A(x)=-4x^3-3x^2-10x+11
c: Q(x)=-N(x)=4x^3+3x^2+10x-11
a)x^2-(a+b)x+ab
= x^2 - ax - bx + ab
= (x^2 - ax) - (bx - ab)
= x(x-a) - b(x-a)
= (x-b)(x-a)
b)7x^3-3xyz-21x^2+9z
=
c)4x+4y-x^2(x+y)
= 4(x + y) - x^2(x+y)
= (4-x^2) (x+y)
= (2-x)(2+x)(x+y)
d) y^2+y-x^2+x
= (y^2 - x^2) + (x+y)
= (y-x)(y+x)+ (x+y)
= (y-x+1) (x+y)
e)4x^2-2x-y^2-y
= [(2x)^2 - y^2] - (2x +y)
= (2x-y)(2x+y) - (2x+y)
= (2x -y -1)(2x+y)
f)9x^2-25y^2-6x+10y
=
Bài 3
a) 2x(x - 3) - x + 3 = 0
2x(x - 3) - (x - 3) = 0
(x - 3)(2x - 1) = 0
x - 3 = 0 hoặc 2x - 1 = 0
*) x - 3 = 0
x = 3
*) 2x - 1 = 0
2x = 1
x = 1/2
Vậy x = 1/2; x = 3
b) (3x - 1)(2x + 1) - (x + 1)² = 5x²
6x² + 3x - 2x - 1 - x² - 2x - 1 - 5x² = 0
(6x² - x² - 5x²) + (3x - 2x - 2x) = 0 + 1 + 1
-x = 2
x = -2
Bài 2
a) 5x² + 30y
= 5(x² + 6y)
b) x³ - 2x² - 4xy² + x
= x(x² - 2x - 4y² + 1)
= x[(x² - 2x + 1) - 4y²]
= x[(x - 1)² - (2y)²]
= x(x - 1 - 2y)(x - 1 + 2y)
a) 4x^2 -12x = (2x)^2 - 2.2x.3 + 3^2 - 3^2
= (2x-3)^2 - 3^2
= (2x - 3 -3)(2x-3 +3)
= 2x(2x - 6)
b) x^2 - y^2 -5x +5y = (x^2 - y^2) - (5x -5y)
= (x+y)(x-y) - 5(x-y)
= (x+y - 5)(x-y)
2. 3x(x - 5) -x +5 = 0
=>3x(x - 5) - (x -5) = 0
=> (3x - 1)(x-5) = 0
=>| 3x - 1 =0 => | 3x = 1 => |x = 1/3
| x - 5 =0 | x = 5 |x= 5
A = 6x4 - 5x3 + 4x2 + 2x - 1
= 6x4 + 3x3 - 8x3 - 4x2 + 8x2 + 4x - 2x - 1
= 3x3. ( 2x + 1 ) - 4x2 ( 2x + 1 ) + 4x ( 2x + 1 ) - ( 2x + 1 )
= ( 2x + 1 ) ( 3x3 - 4x2 + 4x - 1 )
= ( 2x + 1 ) ( 3x3 - x2 - 3x2 + x + 3x - 1 )
= ( 2x + 1 ) [ x2 ( 3x - 1 ) - x ( 3x - 1 ) + ( 3x - 1 ) ]
= ( 2x + 1 ) ( 3x - 1 ) ( x2 - x + 1 )
B = 4x4 + 4x3 + 5x2 + 8x - 6
= 4x4 - 2x3 + 6x3 - 3x2 + 8x2 - 4x + 12x - 6
= 2x3 ( 2x - 1 ) + 3x2 ( 2x - 1 ) + 4x ( 2x - 1 ) + 6 ( 2x - 1 )
= ( 2x - 1 ) ( 2x3 + 3x2 + 4x + 6 )
= ( 2x - 1 ) [ x2 ( 2x + 3 ) + 2 ( 2x + 3 ) ]
= ( 2x - 1 ) ( 2x + 3 ) ( x2 + 2 )
C = x4 + x3 - 5x2 + x - 6
= x4 - 2x3 + 3x3 - 6x2 + x2 - 2x + 3x - 6
= x3 ( x - 2 ) + 3x2 ( x - 2 ) + x ( x - 2 ) + 3 ( x - 2 )
= ( x - 2 ) ( x3 + 3x2 + x + 3 )
= ( x - 2 ) [ x2 ( x + 3 ) + ( x + 3 ) ]
= ( x - 2 ) ( x + 3 ) ( x2 + 1 )
a) \(A=\left(5x-3\right)^2-2\left(5x-3\right)\left(x+3\right)+\left(x+3\right)^2\) ( \(5x-3\) chứ sao lại \(5x+3\) )
\(\Leftrightarrow A=\left[\left(5x-3\right)-\left(x+3\right)\right]^2\)
\(\Leftrightarrow A=\left(5x-3-x-3\right)^2\)
\(\Leftrightarrow A=\left(4x-6\right)^2\)
\(\Leftrightarrow A=\left(4x\right)^2-2.4x.6+6^2\)
\(\Leftrightarrow A=16x^2-48x+36\)
b) \(x^3+5x^2+6x\)
\(=x\left(x^2+5x+6\right)\)
\(=x\left(x^2+3x+2x+6\right)\)
\(=x\left[\left(x^2+3x\right)+\left(2x+6\right)\right]\)
\(=x\left[x\left(x+3\right)+2\left(x+3\right)\right]\)
\(=x\left(x+3\right)\left(x+2\right)\)