Tim GTLN cua:
A= 2/ (x+√ x+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(3A=\frac{3x^2}{x^4+x^2+1}=\frac{x^4+x^2+1-x^4+2x^2-1}{x^4+x^2+1}=\frac{\left(x^4+x^2+1\right)-\left(x^2-1\right)^2}{x^4+x^2+1}\)
\(=1-\frac{\left(x^2-1\right)^2}{x^4+x^2+1}\le1\)
\(\Leftrightarrow3A\le1\Rightarrow A\le\frac{1}{3}\)có GTLN là \(\frac{1}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\pm1\)
a) \(P=\frac{x^2}{x^4+x^2+1}\)
Vì x2; x4 và +1 đều lớn hơn hoặc bằng 0 với mọi x ( trừ 1 :v )
suy ra P >= với mọi x
Mà x2 < x4 + x2 + 1
suy ra P <= 1
Dấu "=" xảy ra <=> P = 1
<=> x2 = x4 + x2 + 1
<=> x4 + x2 + 1 - x2 = 0
<=> x4 + 1 = 0
<=> x4 = -1
mà x4 >= với mọi x
=> vô nghiệm
P.s : tìm đc Pmax khi <=> P = 0
<=> x2 = 0
<=> x = 0
Vậy Pmax = 0 <=> x = 0
Nhầm đoạn P.s :
Tìm đc Pmin nha bạn :v
lí luận >= 0 như trên ta có P >= 0 với mọi x
Dấu "=" xảy ra <=> P = 0
<=> x2 = 0 ( vì mẫu ko bao giờ = 0 đc )
<=> x = 0
Vậy Pmin = 0 <=> x = 0
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) \(-\left|2x-4\right|+2016\)
Vì: \(\left|2x-4\right|\ge0\) , với mọi x
=> \(-\left|2x-4\right|\le0\)
=> \(-\left|2x-4\right|+2016\le2016\)
Vậy GTLN của bt đã cho la 2016 khi \(2x-4=0\Leftrightarrow x=2\)
b) \(1981+\left|x-4\right|\)
Vì: \(\left|x-4\right|\ge0\) , với mọi x
=> \(1981+\left|x-4\right|\ge1981\)
Vậy GTNN của bt đã cho là 1981 khi \(x-4=0\Leftrightarrow x=4\)
Ta có: \(-\left|1,5-x\right|\le0\forall x\)
\(\Rightarrow-\left|1,5-x\right|-2\le-2\forall x\)
Dấu \("="\) xảy ra khi \(\left|1,5-x\right|=0\)
\(\Rightarrow1,5-x=0\Rightarrow x=1,5\)
Vậy \(Min_A=-2\) khi \(x=1,5.\)
Đặt \(y=\frac{x}{x^2+1}\Rightarrow y.\left(x^2+1\right)=x\Rightarrow yx^2+y-x=0\)
\(\Delta=1-4y^2\)
Để y xác định thì \(\Delta\ge0\Rightarrow1-4y^2\ge0\Leftrightarrow\frac{-1}{2}\le y\le\frac{1}{2}\)
Vậy GTNN của phân thức trên là -1/2 tại x=-1
GTLN của phên thức trên là 1/2 tại x=1
\(A=\dfrac{2}{x+\sqrt{x}+1}\)
Ta có : \(x+\sqrt{x}+1=\left(x+2.\dfrac{1}{2}.\sqrt{x}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2\ge\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}\le\dfrac{2}{\dfrac{3}{4}}=\dfrac{2.4}{3}=\dfrac{8}{3}\)
Vậy GTLN của A là \(\dfrac{8}{3}\). Dấu "=" xảy ra khi và chỉ khi \(x=-\dfrac{1}{2}\)
Mà x > 0, nên trường hợp này ta không chấp nhận .
Ta có : Vì x > 0 , \(\Rightarrow x+\sqrt{x}+1\ge1\)
Vậy giá trị nhỏ nhất là \(1\). Dấu "=" xảy ra khi và chỉ khi \(x=1.\)