Cho A= 3^1 + 3^2 + 3^3 +...+ 3^120
a) Chứng minh A chia hết cho 4; 13 và 82
b) Tìm chữ số tận cùng của A
c) Chứng minh 2A - 3 là lũy thừa của 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(3+3^2+3^3+3^4\right)+3^4\left(3+3^2+3^3+3^4\right)+...+3^{2008}\left(3+3^2+3^3+3^4\right)\)
\(=120+3^4.120+...+3^{2008}.120=120\left(1+3^4+...+3^{2008}\right)⋮120\)
\(A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(A=\left(3+3^2+3^3+3^4\right)+...+3^{2008}\left(3+3^2+3^3+3^4\right)\)
\(A=\left(3+3^2+3^3+3^4\right)\left(1+3^4+...+3^{2008}\right)\)
\(A=120\left(1+3^4+...+3^{2008}\right)⋮120\)
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
Ta có: \(A=3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=3.40+3^5.40+...+3^{2009}.40\)
\(=120+3^4.120+...+3^{2008}.120\)
\(=120\left(1+3^4+...+3^{2008}\right)\)
Vì \(120⋮120\) nên \(120\left(1+3^4+...+3^{2008}\right)⋮120\)
hay \(A⋮120\) (đpcm)
câu 1 bạn phân tích ra là a(a+1)(a+2)(a+3) là 4 số tự nhiên liên tiếp nên chia hết cho 24.
câu 2 bạn phân tích ra thành (a-2)(a-1)a(a+1)(a+2) là 5 số tự nhiên liên tiếp nên chia hết cho 120
bài 3 phân tích ra thành:(a-2)(a-1)a(3a-5) nhưng mình k biết nó chia hết cho 24 ở chỗ nào
Ta có ; \(A=3+3^2+3^3+.....+3^{100}\)
\(=\left(3+3^2+3^3+3^4+3^5\right)\)
\(B=3+3^2+3^3+....+3^{120}\)
a, Ta thấy : Cách số hạng của B đều chi hết cho 3
\(B=3+3^2+3^3+....+3^{120}⋮3\)
\(b,B=3+3^2+3^3+....+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{119}+3^{120}\right)\)
\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)
\(B=3.4+3^3.4+...+3^{119}.4\)
\(B=4\left(3+3^3+...+3^{199}\right)\)
Có : \(B=4\left(3+3^3+...+3^{199}\right)⋮4\)
\(\Rightarrow B⋮4\)
\(c,B=3+3^2+3^3+....+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)
\(B=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{118}\left(3+3^2\right)\)
\(B=13+3^2.13+...+3^{118}.13\)
\(B=13\left(3^2+3^4+...+3^{118}\right)\)
Có : \(B=13\left(3^2+3^4+...+3^{118}\right)⋮13\)
\(\Rightarrow B⋮13\)
1)A=3+32+33+...+32008
A=(3+32)+(33+34)+...+(32007+32008)
A=3(1+3)+33(1+3)+...+32007(1+3)
A=3.4+33.4+...+32007.4
A=4(3+....+32007) chia hết cho 4
1, A=(3+3^2)+(3^3+3^4)+...+(3^2007+3^2008)
A= 3.4+3^3.4+...+3^2007 .4
A= 4(3+3^3+...+3^2008)=>ĐPCM
2, theo đề bài :a+b chia hết cho 2
ta có : a+3b=a+b+2b
vì a+b chia hết cho 2 mà 2b chia hết cho 2=> ĐPCM
a, - A = 31 + 32 + 33 + ... + 3120
= (31+32) + (33+34) + ... + (3119+3120)
= (3+32) + 32(3+32) + ... + 3118(3+32)
= 12 + 32.12 + ... + 3118.12
= 12(1+32+34+...+3118) ⋮ 12 ⋮ 4
- A = 31 + 32 + 33 + ... + 3120
= (31+32+33) + (34+35+36) + ...+ (3118+3119+3120)
= (31+32+33) + 33(31+32+33) + ... + 3117(31+32+33)
= 39 + 33.39 + ... + 3117.39
= 39(1+33+36+...+3117) ⋮ 39 ⋮ 13
- Vì A chia hết cho 13 và 4. Mà ƯCLN(4,13) = 1 nên A chia hết cho (4.13) = 82
b,
Nhận thấy:
34n+1 = ...3 (theo quy tắc về chữ số tận cùng của một luỹ thừa, lên Youtube coi video của cô Huyền OLM)
=> 34n+2 = ...3.3 = ...9
34n+3 = ...9.3 = ...27 = ...7
34n = ...3: 3 = ...1
Mà 120: 4 = 30 (4 là số số luỹ thừa đc lặp lại)
=> A = (...3+...9+...7+...1).30 = ...0
Vậy CSTC của A là 0
c,
A = 31 + 32 + 33 + ... + 3120
=> 3A = 32 + 33 + 34 + ... + 3121
=> 3A - A = (32 + 33 + 34 + ... + 3121) - (31 + 32 + 33 + ... + 3120)
=> 2A = 3121 - 3
=> 2A + 3 = 3121
Vậy 2A + 3 là luỹ thừa của 3
P/s: Không phải 2A - 3