bn nào giải đc bài này hông?
1. Số tự nhiên chia cho 6 dư 5 nhưng chia cho 19 dư 2.
a) Tìm số tự nhiên nhỏ nhất có tính chất trên.
b) Tìm dạng tổng quát của các số tự nhiên có tính chất trên.
2. Một số tự nhiên chia cho 5 dư 1 chia cho 21 dư 3
a) Tìm số tự nhiên nhỏ nhất có tính chất trên.
b) Hỏi số đó chia cho 105 dư bao nhiêu?
c) Số đó chia cho 35 dư bao nhiêu?
Toán lớp 6 đấy. Bạn nào mà làm đc thì ghi cả cách làm luôn nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ gọi a là số cần tìm.
Nếu a chia cho 2, 3, 4, 5, 6 đều dư 1, vậy khi a trừ cho 1 sẽ chia hết cho 5 số đó và còn là bội chung của chúng, vậy ta có:
2 = 2; 3 = 3; 4 = 22; 5 = 5; 6 = 2.3.
=> BCNN (2, 3, 4, 5, 6) = 22.3.5 = 60.
Khi 60 + 1 tức là a + 1 sẽ ko chia hết cho 7, ta tiếp tục tìm số đó:
BC (2, 3, 4, 5, 6) + 1 = {121; 181; 241; 301...}
Ta thấy số 301 là số nhỏ nhất chia hết cho 7.
Vậy số cần tìm là 301.
b/ gọi số tổng quát là n, ta có:
n - 1 chia hết cho 60
=> n - 1 - 300 chia hết cho 60
=> n - 301 chia hết cho 60
Mà n chia hết cho 7
=> 301 chia hết cho 7
=> n - 301 chia hết cho 7
=> n - 1 chia hết cho 60.7 = 420
=> n - 1 = 420k
=> n = 420k + 1 (k ϵ N).
a. Gọi số đề bài cho là a
Do a chia 2, 3, 4, 5, 6 đều dư 1 nên a - 1 chia hết cho 2, 3, 4, 5, 6
Mà a nhỏ nhất => a - 1 nhỏ nhất => a - 1 thuộc BCNN(2,3,4,5,6)
=> a - 1 thuộc B(60)
=> a - 1 chia hết cho 60, a chia hết cho 7
=> a - 1 + 120 chia hết cho 60, a + 119 chia hết cho 7
=> a + 119 chia hết cho 60, a + 119 chia hết cho 7
=> a + 119 thuộc BC(60,7)
Do (60,7) = 1 => a + 119 thuộc B(420)
Mà a nhỏ nhất => a + 119 nhỏ nhất và khác 0
=> a + 119 = 420
=> a = 420 - 119 = 301
b) Dạng tổng quát của các số có tính chất trên là: 420k + 301 (k thuộc N)
a, goi so can tim la a
ta co : a : 2,3,4,5,6 deu du 1
suy ra : a-1 : het cho 2,3,4,5,6
( a - 1) la boi chung cua 2,3,4,5,6
a-1 = { 60,120,180,240,300,360,420,480...}
mat khac ta co a chia het cho 7 va phai la so nho nhat
neu a-1=300 thi a=301 la so nho nhat thoa man yeu cau cua de bai
b, a= 2q + 1 = 3r + 1 = 4p +1 = 6s +1 = 7y
a) Gọi số nhỏ nhất cần tìm là a
Do số cần tìm chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4
\(\Rightarrow a-1⋮3;a-2⋮4;a-3⋮5;x-4⋮6\)
\(\Rightarrow a-1+3⋮3;a-2+4⋮4;a-3+5⋮3;a-4+6⋮6\)
\(\Rightarrow a+2⋮3;4;5;6\)
\(\Rightarrow a+2\in BC\left(3;4;5;6\right)\)
Mà BCNN(3;4;5;6) = 60 \(\Rightarrow a+2\in B\left(60\right)\)
Ta có: a + 2 chia hết cho 60; a chia hết cho 13
=> a + 2 + 180 chia hết cho 60; a + 182 chia hết cho 13
=> a + 182 chia hết cho 60; 13
\(\Rightarrow a+182\in BC\left(60;13\right)\)
Mà (60;13)=1 => BCNN(60;13) = 780
\(\Rightarrow a+182\in B\left(780\right)\)
=> a = 780.k + 598 \(\left(k\in N\right)\)
Để a nhỏ nhất thì k nhỏ nhất => k = 0
=> a = 780.0 + 598 = 598
Vậy số nhỏ nhất cần tìm là 598
b) Theo câu a thì dạng chung của các số tự nhiên có tính chất trên (như đề bài) là: 780.k + 598 \(\left(k\in N\right)\)
Gọi số tự nhiên đó là \(n\).
Khi đó \(n\)chia cho \(3,4,5\)có dư lần lượt là \(2,3,4\)nên \(n+1\)chia hết cho cả \(3,,4,5\)nên \(n+1\)chia hết cho \(BCNN\left(3,4,5\right)=60\).
\(n+1=60k\Leftrightarrow n=60k-1,k\inℤ\)
\(60k-1=17l,l\inℤ\Leftrightarrow\hept{\begin{cases}k=17t+2\\l=60t+7\end{cases}}\)
suy ra \(n=17l=17\left(60t+7\right)=1020t+119\)
.