Tìm chữ số tận cùng của:
a) 5430; 2931; 4732; 8833; 7335
b) 234^5^6^7 ; 5797^6^5;
c) 20022001^2004; 7281^82^83
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(19^{5^{1^{8^{9^0}}}}=19^5;2^{9^{1^{9^{6^9}}}}=2^9\)
195=194.19=...1.19=...9
29=24.24.2=16.16.2=...2
=>195+29 có tận cùng là 1
vậy chữ số tận cùng của \(19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}\)là 1
a,Ta xét chữ số tận cùng của 7^1999=(7^4)^499.7^3
7^1999=2401^499.343
=> Chữ số tận cùng của 7^1999=1.3(Vì chữ số tận cùng của 2401^499 là 1 và chữ số tận cùng của 343 là 3)
=>Chữ số tận cùng của 7^1999 là 3
Vậy chữ số tận cùng của 57^1999 là 3.
b,Ta xét chữ số tận cùng của 3^1999=(3^4)^499.27
3^1999=81^499.27
=>Chữ số tận cùng của 3^1999=1.7(Vì chữ số tận cùng của 81^499 là 1 và chữ số tận cùng của 27 là 7)
=> Chữ số tận cùng của 3^1999 là 7
Vậy chữ số tận cùng của 93^1999 là 7.
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
Bài 1:
S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)
Nhóm 4 thừa số 2 vào một nhóm thì vì:
2023 : 4 = 505 dư 3
Vậy
S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)
S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8
S = \(\overline{..6}\) x 8
S = \(\overline{..8}\)
Bài 2:
S = 3 x 13 x 23 x...x 2023
Xét dãy số: 3; 13; 23;..;2023
Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10
Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)
Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.
Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)
Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)
A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)
A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27
A = \(\overline{..7}\)