K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó:AB=AC

mà OB=OC

nên OA là đường trung trực của BC

b: Xét ΔOBA vuông tại B có \(\sin\widehat{OAB}=\dfrac{OB}{OA}=\dfrac{1}{2}\)

=>\(\widehat{OAB}=30^0\)

=>\(\widehat{BAC}=60^0\)

hay ΔBAC đều

a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)

nên AIOC là tứ giác nội tiếp

Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

mà OB=OC

nên OA là đường trung trực của BC

hay OA⊥BC

b: Xét ΔABD và ΔAEB có 

\(\widehat{ABD}=\widehat{AEB}\)

\(\widehat{BAD}\) chung

Do đó: ΔABD\(\sim\)ΔAEB

Suy ra: AB/AE=AD/AB

hay \(AB^2=AD\cdot AE\)

a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)

nên AIOC là tứ giác nội tiếp

Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

mà OB=OC

nên OA là đường trung trực của BC

hay OA⊥BC

b: Xét ΔABD và ΔAEB có 

\(\widehat{ABD}=\widehat{AEB}\)

\(\widehat{BAD}\) chung

Do đó: ΔABD\(\sim\)ΔAEB

Suy ra: AB/AE=AD/AB

hay \(AB^2=AD\cdot AE\)

a: Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

b: Xét ΔOBA vuông tại B có BH làđường cao

nên OH*OA=OB^2=R^2

a: ΔOBC cân tại O

mà OH là đường cao

nên H là trung điểm của BC và OH là phân giác của góc BOC

Xét ΔOBA và ΔOCA có

OB=OC

góc BOA=góc COA
OA chung

=>ΔOBA=ΔOCA
=>góc OCA=90 độ

=>AC là tiếp tuyến của (O)

b: OH*OA=OB^2=R^2 ko đổi

c: Xét ΔOBA vuông tại B có sin OAB=OB/OA=1/2

nên góc OAB=30 độ

=>góc BAC=60 độ

mà BA=AC

nên ΔBAC đều

góc BOC=180-60=120 độ

=>sđ cung nhỏ BC là 120 độ

=>sđ cung lớn BC là 360-120=240 độ

d: Xét (O) có

ΔCBD nội tiếp

CD là đường kính

=>ΔCBD vuông tại B

=>DB//OA

a: Xét ΔOBA và ΔOCA có 

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

Suy ra: \(\widehat{OBA}=\widehat{OCA}\)

hay AC là tiếp tuyến của (O)