B1 : cho 3 a,b,c(a,b,c€N*) Biết a/b=b/c=c/a .tính A=a^2017×a^2018/c^4035
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Rightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2=0-2\cdot0\)
\(\Rightarrow a=b=c=0\)
Thế kết quả vào: \(\left(0-2017\right)^{2018}+\left(0-2017\right)^{2018}-\left(0+2017\right)^{2018}=2017^{2018}\)
Ps: \(\left(-2017\right)^{2018}=2017^{2018}\)
a2+b2+c2=ab+bc+ca
<=>2a2+2b2+2c2=2ab+2bc+2ca
<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)=0
<=>(a-b)2+(b-c)2+(c-a)2=0
<=>a=b=c
mà a+b+c=3<=>a=b=c=1
=>P=0
\(\dfrac{a}{2016}=\dfrac{b}{2017}=\dfrac{c}{2018}=\dfrac{a-c}{2016-2018}=\dfrac{a-b}{2016-2017}=\dfrac{b-c}{2017-2018}\)
\(\rightarrow\dfrac{a-c}{-2}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}\)
\(\rightarrow a-c=2\cdot\left(a-b\right)=2\cdot\left(b-c\right)\)
\(\rightarrow\left(a-c\right)^3=\left[2\cdot\left(a-b\right)\right]^2\cdot2\cdot\left(b-c\right)\)
\(\Rightarrow\left(a-c\right)^3=8\cdot\left(a-b\right)^2\cdot\left(b-c\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=1\Leftrightarrow a=b\\\dfrac{b}{c}=1\Leftrightarrow b=c\\\dfrac{c}{a}=1\Leftrightarrow c=a\end{matrix}\right.\Rightarrow a=b=c\)
\(\Rightarrow A=\dfrac{a^{2017}\cdot a^{2018}}{c^{4035}}=\dfrac{a^{2017}\cdot a^{2018}}{a^{4035}}=\dfrac{a^{4035}}{a^{4035}}=1\)