Cho A=(1-1/1+2)(1-1/1+2+3)(1-1/1+2+3+4)...(1-1/1+2+3+..+n) là tích của n-1 thừ số và B=n+2/n . Tính A/B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a; (n + 4) \(⋮\) ( n - 1) đk n ≠ 1
n - 1 + 5 ⋮ n - 1
5 ⋮ n - 1
n - 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) { -4; 0; 2; 6}
Bài 1 b; (n2 + 2n - 3) \(⋮\) (n + 1) đk n ≠ -1
n2 + 2n + 1 - 4 ⋮ n + 1
(n + 1)2 - 4 ⋮ n + 1
4 ⋮ n + 1
n + 1 \(\in\) Ư(4) = {-4; -2; -1; 1; 2; 4}
n \(\in\) {-5; -3; -2; 0; 1; 3}
Bài 2 :
a) C = ( n + 1 )( n + 2 )( n + 3 )( n + 4 )
<=> C = [( n + 1 ).( n + 4 )].[( n + 2 ).( n + 3 )] + 1
<=> C = ( n2 + 5n + 4 ).( n2 + 5n + 6 ) + 1
Đặt t = n2 + 5n + 5
Suy ra : C = ( t - 1 ).( t + 1 ) + 1
=> C = t2 - 1 + 1
<=> C = t2 hay C = ( n2 + 5n + 5 )2
Vì n thuộc Z => n2 + 5n + 5 thuộc Z => C là số chính phương
( đpcm )
b) E = n2 + ( n + 1 )2 + n2 ( n + 1 )2
<=> E = n2 - 2n( n + 1 ) + ( n + 1 )2 + 2n( n + 1 ) + n2( n +1 )2
<=> E = [ n - ( n + 1 )]2 + 2n( n + 1 ) + [ n( n + 1 )]2
<=> E = ( n - n - 1 )2 + 2n( n + 1 ) + [ n( n + 1 )]2
<=> E = 12 + 2.1.n( n + 1 ) + [ n( n + 1 )]2
<=> E = [ n( n + 1 ) + 1 ]2
<=> E = ( n2 + n + 1 )2
Vì n thuộc Z => n2 + n + 1 thuộc Z => E là số chính phương
( đpcm )
a) \(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a-n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
b) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2008.2009}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2008}-\frac{1}{2009}=1-\frac{1}{2009}=\frac{2008}{2009}\)
c) \(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{94.97}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{94}-\frac{1}{97}=1-\frac{1}{97}=\frac{96}{97}\)
a) 3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>S=[n.(n+1).(n+2)] : 3
3) (139139.133-133133.139) : (2+4+6+...+2002)
= (139.1001.133-133.1001.139) : (2+4+6+...+2002)
= 0 : (2+4+6+...+2002)
= 0
mấy bài này dễ mà ,
bài 1 phân tích các số ra thừa số nguyên tố
tính số trang lớp 5 đã học
bài 3 quá đơn giản
bài 4 a do 7n chia hết n nên 15 phải chia hết 2
xét Ư của 15 đi
b tương tự a
tất cả đều dễ
k mình mình giải cụ thể cho
Ta có:
\(A=(1-\frac{1}{1+2})(1-\frac{1}{1+2+3})(1-\frac{1}{1+2+3+4}) ...(1-\frac{1}{1+2+3+...+n}) \)
Xét công thức tổng quát ta có:
\(1-\frac{1}{1+2+3+...+n}=\frac{2+3+...n.}{1+2+3+..+n} =\frac{n(n+1)-2}{2}:\frac{n(n+1)}{2}=\frac{(n+2)(n-1)}{n(n+1)} \)
Áp dụng ct tổng quá ta có:
A=\(\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{(n-1)(n+2)}{n(n+1)} \)=\(\frac{(1.2.3...(n-1))(4.5.6...(n+2))}{(2.3.4...n)(3.4.5...(n+1))} \)=\(\frac{n+2}{3n} \)
=>A:B=\(\frac{n+2}{3n}:\frac{n+2}{n}=\frac{1}{3} \)