Tìm x :
1, (x-7)x+1 - (x-7)x+11 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x-7\right)^{x-11}\left[\left(x-7\right)^{12}-1\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x-11}=0\\\left(x-7\right)^{12}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\\x-7=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\\x=6\end{matrix}\right.\)
\(\Leftrightarrow\left(x-7\right)^{x+1}\left[\left(x-7\right)-\left(x-7\right)^{12}\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\\x-7=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\\x=6\end{matrix}\right.\)
\(\Leftrightarrow\left(x-7\right)\left(x-6\right)\left(x-8\right)=0\)
hay \(x\in\left\{6;7;8\right\}\)
(x-7)x+1 - (x-7)x+11 = 0
(x-7)x+1 - (x-7)x+1 . (x-7)10 = 0
(x-7)x+1 . [ 1 - (x-7)10 ] =0
(x-7)x+1 = 0 hoặc 1 -(x-7)10 = 0
+) (x-7)x+1 =0
x-7 = 0
x = 7
+) 1- ( x-7)10 = 0
(x -7 )10= 1
x-7 =1 hoặc x-7 = -1
x=8 hoặc x =6
vậy x thuộc {6;7;8}
\(\Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
=>(x-7)^x+1-(x-7)^x+1.(x-7)^10=0
=>(x-7)^x+1.[1-(x-7)^10]=0
TH1:(x-7)^x+1=0<=>x-7=0=<=>x=7
TH2:1-(x-7)^10=0<=>(x-7)^10=1\(\Leftrightarrow\int^{x-7=1}_{x-7=-1}\Leftrightarrow x\in\left\{6;8\right\}\)
vậy x E {6;7;8}
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\Leftrightarrow\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{x+10}\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+10}=0\\1-\left(x-7\right)^{x+10}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\\left(x-7\right)^{x+10}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\\left[{}\begin{matrix}x-7=1\\x-7=-1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\\left[{}\begin{matrix}x=8\\x=6\end{matrix}\right.\end{matrix}\right.\)
Vậy ....