Tam giác ABC, I là điểm bất kì trong tam giác. Các tia AI, BI, CI cắt BC, CA, AB tại M, N, K. CMR:
\(\sqrt{\dfrac{IA}{IM}}+\sqrt{\dfrac{IB}{IN}}+\sqrt{\dfrac{IC}{IK}}\ge3\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trần Thanh Phương, svtkvtm, tth, Lê Thảo, @Akai Haruma,
@Nguyễn Việt Lâm
Bài đẹp quá!
Ta kí hiệu \(S_a,S_b,S_c\) lần lượt là diện tích của các tam giác \(\Delta IBC,\Delta ICA,\Delta IAB\). Từ công thức tỉ số diện tích ta suy ra \(\frac{IA}{IM}=\frac{S_b+S_c}{S_a},\) tương tự cho 2 tỉ số còn lại. Thành thử ta cần chứng minh \(\sqrt{\frac{S_b+S_c}{S_a}}+\sqrt{\frac{S_c+S_a}{S_b}}+\sqrt{\frac{S_a+S_b}{S_a}}\ge3\sqrt{2}\)
Có nhiều cách xử lý cậu này: ví dụ theo bất đẳn thức Cauchy \(\sqrt{\frac{S_b+S_c}{2S_a}}\ge\frac{2\left(S_b+S_c\right)}{2S_a+S_b+S_c}=\frac{2\left(S_b+S_c\right)^2}{2S_a\left(S_b+S_c\right)+\left(S_b+S_c\right)^2}\)
Tương tự cho 2 bất đẳng thức nữa rồi cộng lại ta sẽ được
\(\sqrt{\frac{S_b+S_c}{2S_a}}+\sqrt{\frac{S_c+S_a}{2S_b}}+\sqrt{\frac{S_a+S_b}{2S_a}}\ge\frac{8\left(S_a+S_b+S_c\right)^2}{4\left(S_aS_b+S_bS_c+S_cS_a\right)+2\left(S_a^2+S_b^2+S_c^2+S_aS_b+S_bS_c+S_cS_a\right)}\)
Từ bất đẳng thức quen thuộc \(S_a^2+S_b^2+S_c^2\ge S_aS_b+S_bS_c+S_cS_a\) ta suy ra
\(\frac{8\left(S_a+S_b+S_c\right)^2}{4\left(S_aS_b+S_bS_c+S_cS_a\right)+2\left(S_a^2+S_b^2+S_c^2+S_aS_b+S_bS_c+S_cS_a\right)}\ge3\)
Do đó ta có ĐPCM.
Đây là định lí ceva, bạn có thể tham khảo thêm các cách chứng minh khác trên mạng nếu cần.
Đặt \(S_{AOC}=x^2;S_{BOC}=y^2;S_{AOB}=z^2\) \(\left(x,y,z>0\right)\)
* Ta thấy tam giác AOB và BOP có chung đường cao kẻ từ B
\(\Rightarrow\dfrac{S_{AOB}}{S_{BOP}}=\dfrac{OA}{OP}\). Tương tự \(\dfrac{S_{AOC}}{S_{COP}}=\dfrac{OA}{OP}\)
\(\Rightarrow\dfrac{OA}{OP}=\dfrac{S_{AOB}}{S_{BOP}}=\dfrac{S_{AOC}}{S_{COP}}=\dfrac{S_{AOB}+S_{AOC}}{S_{BOP}+S_{COP}}=\dfrac{x^2+z^2}{y^2}\)
Tương tự \(\dfrac{OB}{OQ}=\dfrac{y^2+z^2}{x^2};\dfrac{OC}{OR}=\dfrac{x^2+y^2}{z^2}\)
* Áp dụng BĐT cau-chy ta có
\(\dfrac{x^2}{y^2}+\dfrac{z^2}{y^2}\ge2\sqrt{\dfrac{x^2z^2}{y^4}}=\dfrac{2xz}{y^2}\) .
Tương tự \(\dfrac{y^2+z^2}{x^2}\ge\dfrac{2yz}{x^2}\) ; \(\dfrac{x^2+y^2}{z^2}\ge\dfrac{2xy}{z^2}\)
\(\Rightarrow A=\dfrac{x^2+z^2}{y^2}.\dfrac{y^2+z^2}{x^2}.\dfrac{x^2+y^2}{z^2}\ge8\)
\(\sqrt{\dfrac{OA}{OP}}+\sqrt{\dfrac{OB}{OQ}}+\sqrt{\dfrac{OC}{OR}}\ge3\sqrt[3]{\sqrt{A}}=3\sqrt{2}\) - đpcm
Qua A kẻ đường thẳng d // BC, \(d\cap CP=\left\{O\right\}\), \(d\cap BI=\left\{E\right\}\)
\(\Delta\)OAP và \(\Delta\)PBC có OA//BC nên \(\dfrac{PA}{PB}=\dfrac{OA}{BC}\)
\(\Delta\)AEN và \(\Delta\)BNC có AE//BC nên \(\dfrac{NA}{NC}=\dfrac{AE}{BC}\)
suy ra \(\dfrac{PA}{PB}+\dfrac{NA}{NC}=\dfrac{OA}{BC}+\dfrac{AE}{BC}=\dfrac{OE}{BC}\)(1)
\(\Delta\)AIE và \(\Delta\)BIC có AE//BC nên \(\dfrac{IA}{IM}=\dfrac{IE}{BC}\)
\(\Delta\)OIE và \(\Delta\)BIC có OE//BC nên \(\dfrac{IA}{IM}=\dfrac{OE}{BC}\)
suy ra \(\dfrac{IA}{AM}=\dfrac{OE}{BC}\)(2)
Từ (1) và (2) \(\Rightarrow\)\(\dfrac{IA}{IM}=\dfrac{PA}{PB}+\dfrac{NA}{NC}\) (dpcm)