Cho a;b;c là 3 cạnh tam giác. Chứng minh:
\(\sqrt{\dfrac{a}{b+c-a}}+\sqrt{\dfrac{b}{c+a-b}}+\sqrt{\dfrac{c}{a+b-c}}\ge3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
Áp dụng BĐT AM-GM ta có:
\(2\sqrt{\dfrac{y+z-x}{x}}\le\dfrac{y+z-x}{x}+1=\dfrac{y+z}{x}\)
\(\Leftrightarrow\sqrt{\dfrac{x}{y+z-x}}\ge\dfrac{2x}{y+z}\)
Áp dụng vào đề bài ta có:
\(A=\sqrt{\dfrac{a}{b+c-a}}+\sqrt{\dfrac{b}{c+a-b}}+\sqrt{\dfrac{c}{a+b-c}}\ge\)
\(\ge\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge2\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=\dfrac{2.3}{2}=3\)(BĐT Nesbitt)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)