K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

AB là tiêp tuyến

AC là tiếp tuyến

Do đó AB=AC
mà OB=OC

nên AO là đường trung trực của BC

b: Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)CD

=>CD//OA

25 tháng 12 2016

Hình thì mình thua nha bạn

25 tháng 12 2016

(Bài này có dính líu đến tứ giác nội tiếp một chút, không biết bạn học chưa. Mình sẽ cố né nội dung đó.)

\(A,O,B,C\) cùng thuộc đường tròn đường kính \(AO\).

\(B,O,C,E\) cùng thuộc đường tròn đường kính \(BE\).

(Bạn có thể chứng minh 2 điều này bằng các góc vuông)

Mà đường tròn ngoại tiếp tam giác \(BOC\) chỉ có 1 nên \(A,B,O,C,E\) cùng thuộc đường tròn.

\(AECO\) là hình thang nội tiếp nên nó là hình thang cân.

Từ đó CM được \(GA=GO,IA=IO\) và suy ra \(IG\) là đường trung trực của \(OA\).

24 tháng 11 2023

a: Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

OB=OC

=>O nằm trên đường trung trực của BC(1)

AB=AC

=>A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

b: Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)CD

mà OA\(\perp\)BC

nên OA//CD

c: Gọi H là giao điểm của BC và OA

OA là đường trung trực của BC

=>OA\(\perp\)BC tại trung điểm của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

ΔOBA vuông tại B

=>\(BO^2+BA^2=OA^2\)

=>\(BA^2=5^2-3^2=16\)

=>BA=4(cm)

Xét ΔBOA vuông tại B có BH là đường cao

nên \(BH\cdot OA=BO\cdot BA\)

=>\(BH\cdot5=3\cdot4=12\)

=>BH=2,4(cm)

H là trung điểm của BC

=>\(BC=2\cdot BH=4,8\left(cm\right)\)

AB=AC
mà AB=4cm

nên AC=4cm

Chu vi tam giác ABC là:

AB+AC+BC

=4+4+4,8

=12,8(cm)

Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0
23 tháng 12 2016

Các bạn ơi giải hộ mình nhe

23 tháng 12 2016

Đề đúng không vậy bạn? Chỉ có thế thôi hả? \(AO⊥BC\) là hiển nhiên mà! Có gì phải CM?

21 tháng 11 2018

các bạn giúp mình với ạ .mình cám ơn

4 tháng 1 2021

Góc HCF sao lại bằng góc FCA vậy mn ???

a: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA⊥BC

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2=R^2\)

b:Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

Suy ra: BC⊥CD

mà BC⊥AO

nên AO//CD

12 tháng 9 2023

Còn phần c thì sao ạ?

16 tháng 7 2020

Vì cậu làm câu a) rồi nên mình chỉ làm 2 câu còn lại thôi nhá (:

O H E C B D M A

a. Ta có: AB = AC (tính chất hai tiếp tuyến cắt nhau). Suy ra  \(\Delta ABC\)cân tại A.

AO là tia phân giác của góc BAC (tính chất hai tiếp tuyến cắt nhau)

Suy ra AO là đường cao của tam giác ABC (tính chất tam giác cân)

Ta có: AO vuông góc với BC tại H

Lại có: \(AB\perp OB\)( tính chất tiếp tuyến )

Tam giác ABO vuông tại B có \(BH\perp AO\)

Theo hệ thức lượng trong tam giác vuông, ta có:

\(OB^2=OH.OA\Rightarrow OH=\frac{OB^2}{OA}=\frac{32}{5}=1,8\left(cm\right)\)

b. Áp dụng định lí Pitago vào tam giác vuông ABO, ta có:

AO2 = AB2 + BO2

Suy ra: AB2 = AO2 – BO2 = 52 – 32 = 16

AB = 4 (cm)

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

DB = DM

EM = EC

Chu vi của tam giác ADE bằng:

AD + DE + EA = AD + DB + AE + EC

= AB + AC = 2AB = 2 . 4 = 8 ( cm )