K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

\(25-9x^2-6xy-y^2\)

\(=25-\left(9x^2+6xy+y^2\right)\)

\(=5^2-\left(3x+y\right)^2\)

\(=\left(5-3x-y\right)\left(5+3x+y\right)\)

AH
Akai Haruma
Giáo viên
8 tháng 10 2023

Lời giải:

a. $A=9x^2+15x+6xy+y^2+5y=(9x^2+6xy+y^2)+(15x+5y)$
$=(3x+y)^2+5(3x+y)=0^2+5.0=0$

b. $25x^2-y^4-5x+y^2=(25x^2-y^4)-(5x-y^2)=(5x-y^2)(5x+y^2)-(5x-y^2)$

$=(5x-y^2)(5x+y^2-1)$

5 tháng 10 2021

a) \(=\left(6x\right)^2-2.6x.1+1=\left(6x-1\right)^2\)

b) \(=5xy\left(x^2+2x+1\right)=5xy\left(x+1\right)^2\)

c) \(=\left(3x-y\right)^2-25=\left(3x-y-5\right)\left(3x-y+5\right)\)

d) \(=x\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(x+7\right)\)

23 tháng 10 2023

a)

\(9x^2-3x+2y-4y^2\\=(9x^2-4y^2)-(3x-2y)\\=[(3x)^2-(2y)^2]-(3x-2y)\\=(3x-2y)(3x+2y)-(3x-2y)\\=(3x-2y)(3x+2y-1)\)

b)

\(3x^2-6xy+3y^2-5x+5y\\=3(x^2-2xy+y^2)-5(x-y)\\=3(x-y)^2-5(x-y)\\=(x-y)[3(x-y)-5]\\=(x-y)(3x-3y-5)\\Toru\)

13 tháng 1 2022

\(a,3x^2-6x+9x^2=12x^2-6x=6x\left(2x-1\right)\\ b,3x^2+5y-3xy-5x=\left(3x^2-3xy\right)-\left(5x-5y\right)=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\\ c,3y^2-3z^2+3x^2+6xyz=3\left(y^2-z^2+x^2+2xyz\right)\\ d,x^2-25-2xy+y^2=\left(x-y\right)^2-5^2=\left(x-y-5\right)\left(x-y+5\right)\)

28 tháng 8 2018

10 tháng 3 2021

k cho tui nha

20 tháng 7 2021

a) x2-4y2-x++2y

= x2-(2y)2-x+2y

= (x-2y)(x+2y)-(x-2y)

=(x-2y)(x+2y-1)

24 tháng 9 2021

\(a,=\left(3x+1\right)^2-y^2=\left(3x-y+1\right)\left(3x+y+1\right)\\ b,=x\left(x^2-5x+6\right)=x\left(x^2-2x-3x+6\right)=x\left(x-2\right)\left(x-3\right)\)

9 tháng 11 2020

a) x2-2x-y2+2y

=(x2-y2)-(2x-2y)

=(x-y)(x+y)-2(x-y)

=(x-y)(x+y-2)

9 tháng 11 2020

d) x2-25+y2+2xy

=(x2+y2+2xy)-52

=(x+y)2-52

=(x+y+5)(x+y-5)

1b.=2((x+y)+(x+y)(x-y)+(x-y))=2(x2-y2+x+y+x-y)=2(x2-y2+2x)=2x2-2y2+4x

2a.=4xy+4xy+2y=8xy+2y=2y(4x+1)

b.=(3x)2+2.3x.y+y2-(2z)2=(3x+y)2-(2z)2=(3x+y-2z)(3x+y+2z)

c.=x2-x-7x+7=x(x-1)-7(x-1)=(x-1)(x-7)

30 tháng 9 2018

\(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)^2\)

\(=\left(2x\right)^2\)

\(=4x^2\)

hk tốt

^^

5 tháng 9 2021

\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11

 

 

e: Ta có: \(x^2-6x+y^2+4y+2=0\)

\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Dấu '=' xảy ra khi x=3 và y=-2