K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2015

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

Cộng theo vế 2 bất đẳng thức trên ta có:

M >\(\frac{a+b+c}{a+b+c}\)

=>M>1 (1)

Aps dụng t/c (a;b>1) =>\(\frac{a}{b}

7 tháng 11 2015

tương tự bài này :

https://vn.answers.yahoo.com/question/index?qid=20100728065830AAMp07Z

7 tháng 11 2015

Vì a+b<a+b+c=>a/(a+b)>a/(a+b+c)

Vì b+c<a+b+c=>b/b+c>b/(a+b+c)

Vì c+a<a+b+c=>c/c+a>c/(a+b+c)

=>a/a+b+b/(b+c)+c/c+a>a/(a+b+c)+b/(a+b+c)+c/(a+b+c)=(a+b+c)/(a+b+c)=1

=>a/a+b+b/b+c+c/c+a>1

=> điều phải chứng minh

Mình viết hơi khó đọc. bạn thông cảm nha !

 

4 tháng 4 2016

Ta có : a/a+b > a/a+b+c       (a,b,c > 0)

b/b+c > b/b+c+a

c/c+a > c/c+a+b

=> M > 1     (1)

Mặt khác : a/a+c < 1 => a/a+b < a+c/a+b+c     (a,b,c > 0)

                                   b/b+c < b+a/b+c+a

                                   c/c+a < c+b/c+a+b

=> M < 2        (2)

Từ (1) và (2) = > 1 < M < 2

=> M ko phải là số nguyên.  (đpcm)

Ai k mk mk k lại cho!!

28 tháng 12 2015

ta có\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{c+a+b}=1\)

ta lại có tương tự M<2

suy ra Mko ơphair số nguyên