Cho a, b, c > 0. Chứng minh rằng: \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a, b, c > 0. Chứng minh rằng : \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số nguyên
tương tự bài này :
https://vn.answers.yahoo.com/question/index?qid=20100728065830AAMp07Z
Vì a+b<a+b+c=>a/(a+b)>a/(a+b+c)
Vì b+c<a+b+c=>b/b+c>b/(a+b+c)
Vì c+a<a+b+c=>c/c+a>c/(a+b+c)
=>a/a+b+b/(b+c)+c/c+a>a/(a+b+c)+b/(a+b+c)+c/(a+b+c)=(a+b+c)/(a+b+c)=1
=>a/a+b+b/b+c+c/c+a>1
=> điều phải chứng minh
Mình viết hơi khó đọc. bạn thông cảm nha !
Ta có : a/a+b > a/a+b+c (a,b,c > 0)
b/b+c > b/b+c+a
c/c+a > c/c+a+b
=> M > 1 (1)
Mặt khác : a/a+c < 1 => a/a+b < a+c/a+b+c (a,b,c > 0)
b/b+c < b+a/b+c+a
c/c+a < c+b/c+a+b
=> M < 2 (2)
Từ (1) và (2) = > 1 < M < 2
=> M ko phải là số nguyên. (đpcm)
Ai k mk mk k lại cho!!
ta có\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{c+a+b}=1\)
ta lại có tương tự M<2
suy ra Mko ơphair số nguyên
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
Cộng theo vế 2 bất đẳng thức trên ta có:
M >\(\frac{a+b+c}{a+b+c}\)
=>M>1 (1)
Aps dụng t/c (a;b>1) =>\(\frac{a}{b}