biết \(1^2+2^2+3^2+...+10^2=385\)tính nhanh tổng S= \(2^2+4^2+6^2+...+20^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2^2\left(1^2+2^2+3^2+...+10^2\right)=2^2+4^2+6^2+...+20^2=S\)
=> \(S=2^2.385=1540\)
\(S=2^2+4^2+6^2+....+20^2\)
\(=\left(1.2\right)^2+\left(2.2\right)^2+\left(2.3\right)^2+...+\left(2.10\right)^2\)
\(=1^2.2^2+2^2.2^2+2^2.3^2+....+2^2.10^2\)
\(=2^2.\left(1^2+2^2+3^2+....+10^2\right)\)
Mà \(1^2+2^2+3^2+...+10^2=385\)
Nên \(S=2^2.385=4.385=1540\)
2^2 = (1.2)^2
4^2 = (2.2)^2
.....
Vế dưới = (1.2)^2 + (2.2)^2 + .........+ (9.2)^2 + (10.2)^2 = 2^2.(1^2 + 2^2 + 3^2 + .....+ 9^2 + 10^2)
= 4(385) = 1540
2^2 4^2 6^2 8^2 ..... 18^2 20^2
= (1x2)^2 (2x2)^2 (3x2)^2 (4x2)^2 ..... (9x2)^2 (10x2)^2
= 1^2 x 2^2 2^2 x 2^2 3^2 x 2^2 4^2 x 2^2 ..... 9^2 x 2^2 10^2 x 2^2
= (1^2 2^2 3^2 4^2 ..... 9^2 10^2) x 2^2
= 385 x 2^2 = 385 x 4 = 1540
\(S=2^2+4^2+.....+20^2\)
\(S=1^2.2^2+2^2.2^2+.......+10^2.2^2\)
\(S=2^2.\left(1^2+2^2+.....+10^2\right)\)
\(S=4.385=1540\) (đề bài)
Vì 12+22+32+...+102 = 385
Mà S = 22+42+62+...+202
= 22.(12+22+32+...+102) = 4.385 = 1540
S=22+42+...+202
=> 1/2 .S=12+22+...+102
=> 1/2 .S=385
=> S = 385 . 2
=> S = 770
\(S=2^2+4^2+....+20^2=?\)
\(=\left(2.1\right)^2+\left(2.2\right)^2+\left(2.3\right)^2+....+\left(2.10\right)^2\)
\(=2^2.1^2+2^2.2^2+2^2.2^3+...+2^2.10^2\)
\(=2^2.\left(1^2+2^2+3^2+...+10^2\right)\)
\(=2^2.385\)
\(=4.385\)
\(=1540\)
S=22+42+...+202
=> 1/2 .S=12+22+...+102
=> 1/2 .S=385
=> S = 385 . 2
=> S = 770
S = 2^2 + 4^2 + 6^2 + .. +20^2
S = 2^2 + 2^2.2^2 + 2^2.3^2 + ... + 2^2 . 10^2
S = 2^2 ( 1 + 2^2 + 3^2 + .. + 10^2)
S = 4 . 385
S = 1540
\(S=2^2+4^2+....+20^2\)
\(S=2^2.1^2+2^2.2^2+......+2^2.10^2\)
\(S=4.\left(1^2+2^2+.....+10^2\right)\)
\(S=4.385=1540\)
S=2^2+4^2+6^2+...+20^2
=2^2.1+2^2.2^2+2^2.3^2+...+2^2.10^2
=2^2.(1+2^2+3^2+...+10^2)
=4.385
=1540
tick nha
Ta có : \(2^2+4^2+6^2+...+20^2=\left(1\cdot2\right)^2+\left(2\cdot2\right)^2+\left(2\cdot3\right)^2+...+\left(2\cdot10\right)^2\)
\(=4\cdot1^2+4\cdot2^2+4\cdot3^2+...+4\cdot10^2\)
\(=4\left(1^2+2^2+3^2+...+10^2\right)\)
\(=4\cdot385=1540\)
Ta có: \(1^2+2^2+3^2+...+10^2=385\)
\(\Rightarrow2^2\left(1^2+2^2+3^2+...+10^2\right)=2^2.385\)
\(\Rightarrow2^2+4^2+6^2+...+20^2=1540\)