K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2015

Với mọi n>1, ta có :

A=13+23+...+n3 = (1+2+...+n)2

Vì vậy A luôn là số chính phương

 

12 tháng 10 2015

giống bài lớp 6

23 tháng 9 2015

1)

987 = 9.102 + 8.101 + 7.100

2564 = 2.103 + 5.102 + 6.101 + 4.100

abcde = a.104 + b.103 + c.102 + d.101 + e.100

2)

a) n = 1                                        b ) n = 0

3)

a) 13 + 23 = 1 + 8 = 9 = 32

b) 13 + 23 + 33 = 1 + 8 + 27 = 36 = 62

c ) 13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102

15 tháng 7 2019

\(A=1+3+....+\left(2n+1\right)=\frac{\left(2n+2\right)\left(n+1\right)}{2}=\left(n+1\right)^2\)

15 tháng 7 2019

A = 1 + 3 + 5 + 7 + ... + 2n + 1

   = \(\left[\left(2n+1-1\right):2+1\right].\left(\frac{2n+1+1}{2}\right)\)

   = \(\left(n+1\right).\left(n+1\right)\)

   = \(\left(n+1\right)^2\)

=> A là số chính phương (đpcm)

b) \(2+4+6+...+2n\)

\(\left[\left(2n-2\right):2+1\right].\frac{2n+2}{2}\)

\(n.\left(n+1\right)\)

\(n^2+n\)

\(\Rightarrow\)B không là số chính phương

12 tháng 12 2015

hỏi gớm hè

 

16 tháng 1 2017

n=1

n=3

15 tháng 4 2017

ta có:

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0

do 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên 1!+2!+....+n! không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

26 tháng 11 2015

Ta có :

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left[n\left(n+3\right)\right].\left[\left(n+1\right)\left(n+2\right)\right]=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

ko là số cp

 

26 tháng 10 2021
a,là số chính phương
26 tháng 10 2021
b,không phải là số chính phương