Cho a.b/a + b = b.c/ b+c. Chứng minh rằng a/b = b/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a.b-a.c+b.c-c2=-1
a.b-a.c+b.c-c.c=-1
a.(b-c)+c.(b-c)=-1
(b-c).(a+c)=-1
Mà a;b;c\(\in\)Z
=>b-c=-1;a+c=1
b=-1+c;a=1-c
=>a đối b
Hoặc b-c=1;a+c=-1
b=1+c;a=-1-c
=>a đối b
=>a;b đối nhau khi a.b-a.c+b.c-c2=-1
Chúc bn học tốt
\(ab-ac+bc-c^2=-1\)\(\Leftrightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)
\(\Leftrightarrow\left(a+c\right)\left(b-c\right)=-1=1.\left(-1\right)=\left(-1\right).1\)
mà \(1+\left(-1\right)=0\)\(\Rightarrow\left(a+c\right)+\left(b-c\right)=0\)
\(\Leftrightarrow a+c+b-c=0\)\(\Leftrightarrow a+b=0\)
Vậy a và b là 2 số đối nhau
![](https://rs.olm.vn/images/avt/0.png?1311)
Điều phải chứng minh tương đương với
\(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}\ge0\\ \Leftrightarrow\left(a+b-2\sqrt{ab}\right)+\left(b+c-2\sqrt{bc}\right)+\left(c+a-2\sqrt{ca}\right)\ge0\\ \Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)
(luôn đúng với mọi a,b,c không âm)
Dấu = xảy ra khi a=b=c >=0
![](https://rs.olm.vn/images/avt/0.png?1311)
=> a.(b-c) + c.(b-c)=-1
=> (a+c).(b-c) = -1
Mà a,b,c thuộc Z => a+c và b-c đều thuộc Z => a+c=1;b-c=-1 hoặc a+c=-1;b-c=1
=> a=-b
=> ĐPCM
k mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
=>a(b-c)+c(b-c)=-1=>(b-c)(a+c)=1=>b-c=-1.a+c=1 công theo từng vế ta đc a+b=0=> a=-b=> a và b đối nhau
tương tự vs b-c=1;a+c=-1
Đề bạn sai nhé mk chữa luôn
![](https://rs.olm.vn/images/avt/0.png?1311)
Với a,b,c>0 .
áp dụng bđt cosi,ta có:
b.c/a+c.a/b>_2c (1)
c.a/b+a.b/c>_2a (2)
a.b/c+b.c/a>_2b ((3)
Cộng (1),,(2),,(3) vế theo vế ,ta được:
2.(b.c/a+c.a/b+a.b/c)>_ 2.(a+b+c)
=>b.c/a+c.a/b+a.b/c>_ a+b+c (đpcm)
Đề sai, theo mình nghĩ đề đúng có lẽ phải thế này.