Chứng minh rằng:
a) 942 mũ 60 - 351 mũ 37 chia hết cho 5.
b) 99 mũ 5 - 98 mũ 4 + 97 mũ 3 - 96 mũ 2 chia hết cho 2 và 5.
Giải cả 2 phần hộ mk nka!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 942^60-351^37
=(942^4)^15-351^37
=(....6)^15 -351^37
suy ra( 942^4)^15 có tận cùng là 6
357^37 có tận cùng là 1
hiệu của 942^60-351^37 có tận cùng là 5
suy ra 942^60-351^37 chia hết cho 5
a) Ta có: 942^60=(942^4)^15=...6^15=...6
351^37=...1
Suy ra: 942^60-351^37=...5 chia hết cho 5. Vậy 942^60-351^37 chia hết cho 5
b) Làm tương tự câu trên
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
Số số hạng của A:
98 - 1 + 1 = 98 (số)
Do 98 ⋮ 2 nên ta có thể nhóm các số hạng của A thành các nhóm mà mỗi nhóm có 2 số hạng như sau:
A = (5 + 5²) + (5³ + 5⁴) + ... + (5⁹⁷ + 5⁹⁸)
= 5.(1 + 5) + 5³.(1 + 5) + ... + 5⁹⁷.(1 + 5)
= 5.6 + 5³.6 + ... + 5⁹⁷.6
= 6.(5 + 5³ + ... + 5⁹⁷) ⋮ 6
Vậy A ⋮ 6
A=(5+5^2)+(5^3+5^4)+...+(5^97+5^98)
A=5(1+5)+5^3(1+5)+...+5^97(1+5)
A=(5.6)+(5^3.6)+...+(5^97.6)
A=6.(5+5^3+...+5^97)
suy ra A⋮6
Suy ra A
tao chịch nát lồn crush tao chảy nước
Dcm. Đa s** còn công khai