K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=k\)

=>x=5k; y=7k; z=3k

\(x^2+y^2+z^2=585\)

\(\Leftrightarrow25k^2+49k^2+9k^2=585\)

\(\Leftrightarrow k^2=\dfrac{585}{83}\)

Trường hợp 1: \(k=\sqrt{\dfrac{585}{83}}\)

\(\Leftrightarrow x=5\sqrt{\dfrac{585}{83}};y=7\sqrt{\dfrac{585}{83}};z=3\sqrt{\dfrac{585}{83}}\)

 

Trường hợp 2: \(k=-\sqrt{\dfrac{585}{83}}\)

\(\Leftrightarrow x=-5\sqrt{\dfrac{585}{83}};y=-7\sqrt{\dfrac{585}{83}};z=-3\sqrt{\dfrac{585}{83}}\)

13 tháng 10 2015

x/5 = y/7 = z/3 =>(x/5)^2= (y/7)^2 = (z/3)^2 hay x^2/25 = y^2/49 =z^2 /9  

x^2/25 = y^2/49 =z^2 /9 = (x^2 + y^2 - z^2) /(25+49 -9)=585/65 =9=3^2  

=> (x/5)^2=3^2 =>x/5 =+-3 =>x=+-15  

(y/7)^2=3^2 =>y/7 =+-3 =>y=+-21  

(z/3)^2 =3^2 =>z/3 =+-3 =>z=+-9  

vậy có 2 cặp (x;y;z) là: (15;21;9) và (-15;-21;-9)

13 tháng 10 2015

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}=\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{585}{65}=9\)

\(\Rightarrow\frac{x^2}{25}=9\Rightarrow x^2=225\Rightarrow x=15hoặc-15\)

\(\frac{y^2}{49}=9\Rightarrow y^2=441\Rightarrow y=21hoặc-21\)

\(\frac{z^2}{9}=9\Rightarrow z^2=81\Rightarrow z=9\)

18 tháng 7 2015

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\) va \(x^2+y^2+z^2=585\)

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)

\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\) va \(x^2+y^2+z^2=585\)

Áp dụng tính chất day ti số bằng nhau ta có :

\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2+z^2}{25+49+9}=\frac{585}{83}=7,048192771\)

xin mời quý khách xem lại đề nhé để sai rồj đó

18 tháng 7 2015

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2+z^2}{25+49+9}=\frac{585}{83}=\)số xấu 

22 tháng 7 2015

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\) va \(x^2+y^2-z^2=585\)

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)

Suy ra : \(\frac{x^2}{25}=9\Rightarrow x^2=9.25=225\Rightarrow x=15\) hoac \(x=-15\)

\(\frac{y^2}{49}=9\Rightarrow y^2=9.49=441\Rightarrow y=21\)hoac \(y=-21\)

\(\frac{z^2}{9}=9\Rightarrow z^2=9.9=81\Rightarrow z=9\) hoac \(z=-9\)

9 tháng 8 2017

Đún đấyg

15 tháng 7 2015

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)

suy ra:

\(\frac{x^2}{25}=9\Rightarrow x^2=225\Rightarrow x=15\)hoặc \(x=-15\)

\(\frac{y^2}{49}=9\Rightarrow y^2=441\Rightarrow y=21\)hoặc \(y=-21\)

\(\frac{z^2}{9}=9\Rightarrow z^2=81\Rightarrow z=9\)hoặc \(z=-9\)

15 tháng 7 2015

ÁP dụng dãy tỉ số bằng nhau vào là ra 

22 tháng 10 2016

đúg đề hết chưa bn

22 tháng 10 2016

chuẩn luôn

21 tháng 7 2020

Bài làm:

Ta có: \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Leftrightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2+z^2}{25+49+9}=\frac{585}{83}\)

\(\Rightarrow\hept{\begin{cases}x^2=\frac{585.25}{83}\\y^2=\frac{585.49}{83}\\z^2=\frac{585.9}{83}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\pm5\sqrt{\frac{585}{83}}\\y=\pm7\sqrt{\frac{585}{83}}\\z=\pm3\sqrt{\frac{585}{83}}\end{cases}}\)

Số hơi xấu tí

21 tháng 7 2020

theo tính chất dãy tỉ số bằng nhau

\(\Rightarrow\frac{x}{5}=\frac{y}{7}=\frac{z}{3}=\frac{x^2+y^2+z^2}{5^2+7^2+3^2}=\frac{585}{83}\)

do đó

\(\frac{x}{5}=\frac{585}{83}\Rightarrow x=5.585:83\approx35,3\)

\(\frac{y}{7}=\frac{585}{83}\Rightarrow y=7.585:83\approx49,4\)

\(\frac{z}{3}=\frac{585}{83}\Rightarrow z=3.585:83\approx21\)

29 tháng 7 2017

hình như x^2+y^2-z^2 nếu chỗ đó dấu cộng thì rất khó tính

23 tháng 8 2017

Ta có:\(\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\left(1\right)\)

          \(\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\left(2\right)\)

                  Từ (1) và (2) suy ra:\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau ta đc:

       \(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{9}=-5\\\frac{y}{7}=-5\\\frac{z}{3}=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-45\\y=-35\\z=-15\end{cases}}}\)

23 tháng 8 2017

Ta có:

\(\frac{x}{y}=\frac{9}{7}\)=> \(\frac{x}{9}=\frac{y}{7}\)(1)

\(\frac{y}{z}=\frac{7}{3}\)=>\(\frac{y}{7}=\frac{z}{3}\)(2)

Từ (1) (2)

=>\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)

=>\(\frac{x}{9}=-3\)=>x=-27

    \(\frac{y}{7}=-3\)=>y=-21

     \(\frac{z}{3}=-3\)=>z=-9

Vậy x=-27 ; y=-21 ; z=-9

25 tháng 9 2017

Đặt \(k=\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)

=> \(x=5k\) ; \(y=7k\)\(z=3k\)     (*)

Thay vào \(x^2+y^2-z^2=585\) ta có:

   \(\left(5k\right)^2+\left(7k\right)^2-\left(3k\right)^2=585\)

  \(\Leftrightarrow25k^2+49k^2-9k^2=585\)

 \(\Leftrightarrow65k^2=585\)

  \(\Leftrightarrow k^2=\frac{585}{65}=9\)

   \(\Leftrightarrow k=\pm3\)

Với k = 3, thay vào các biểu thức ở (*) ta tính được:

   \(x=5k=5.3=15\) ; \(y=7k=7.3=21\)\(z=3.k=3.3=9\)

Với k = -3, ta có: \(x=-15;y=-21;z=-9\)

20 tháng 7 2017

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9=3^2.\)

\(\Rightarrow\frac{x^2}{25}=\left(\frac{x}{5}\right)^2=3^2\Rightarrow\frac{x}{5}=3\Rightarrow x=15\)hoặc \(\frac{x}{5}=-3\Rightarrow x=-15\)

Tương tự đối với y và z