Bài 2: Cho nửa đường tròn tâm O đường kính BC. Vẽ hai tiếp tuyến Bx và Cy của (O). Gọi A là điểm trên nửa đường tròn sao cho AB<AC. Tiếp tuyến tại A của (O) cắt Bx tại M và Cy tại N.
a) Chứng minh: MN = BM + CN
b) Chứng minh OM vuông góc AB và OM song song AC
c) Vẽ đường cao AH của tam giác ABC. Chứng minh AH^2 =AB.AC.sinB.cosB
d) Đường thẳng AC cắt Bx tại D. Chứng minh OD vuông góc BN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔACB nội tiếp đường tròn
AB là đường kính
Do đó: ΔACB vuông tại C
Xét ΔPAB vuông tại A có AC là đường cao ứng với cạnh huyền PB, ta được:
\(PA^2=PC\cdot PB\)
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó:ΔACB vuông tại C
Xét (O) có
DC,DA là tiếp tuyến
Do đó: DC=DA
Xét (O)có
EC,EB là tiếp tuyến
Do đó: EC=EB
DC+CE=DE
mà DC=DA và EC=EB
nên DA+EB=DE
b: Xét tứ giác DAOC có \(\widehat{DAO}+\widehat{DCO}=90^0+90^0=180^0\)
=>DAOC là tứ giác nội tiếp
=>D,A,O,C cùng thuộc một đường tròn
Xét ΔOAC có OA=OC=R
nên ΔOAC cân tại O
ADCO là tứ giác nội tiếp
=>\(\widehat{ADO}=\widehat{ACO}\)
mà \(\widehat{ACO}=\widehat{OAC}\)(ΔOAC cân tại O)
nên \(\widehat{ADO}=\widehat{OAC}=\widehat{CAB}\)
a: Xét (O) có
MB là tiếp tuyến
MA là tiếp tuyến
Do đó: MB=MA
Xét (O) có
NA là tiếp tuyến
NC là tiếp tuyến
Do đó: NA=NC
MN=MA+AN
nên MN=MB+NC
b: Ta có: MB=MA
OB=OA
Do đó:OM là đường trung trực của AB
=>OM\(\perp\)AB(1)
Ta có: NA=NC
OA=OC
Do đó: ON là đường trung trực của AC
=>ON\(\perp\)AC(2)
Xét (O) có
ΔABC nội tiếp
BC là đường kính
DO đó: ΔABC vuông tại A
=>AB\(\perp\)AC(3)
Từ (1) và (3) suy ra OM//AC
Từ (2) và (3) suy ra ON//AB