chứng minh rằng tổng sao cho chia hết cho 13
1+3+32+33+34+...........+320
chứng minh rằng
A=1+7+72+73+74+...........+719 là hợp số
giúp với mai mình đi học rùi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)
\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)
Bài 2:
\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)
`#3107.101107`
\(A=1+3+3^2+3^3+...+3^{101}\)
$A = (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ... + (3^{99} + 3^{100} + 3^{101}$
$A = (1 + 3 + 3^2) + 3^3 (1 + 3 + 3^2) + ... + 3^{99}(1 + 3 + 3^2)$
$A = (1 + 3 + 3^2)(1 + 3^3 + ... + 3^{99})$
$A = 13(1 + 3^3 + ... + 3^{99})$
Vì `13(1 + 3^3 + ... + 3^{99}) \vdots 13`
`\Rightarrow A \vdots 13`
Vậy, `A \vdots 13.`
\(A=1+3+3^2+3^3+3^4+3^5+...+3^{101}\\=(1+3+3^2)+(3^3+3^4+3^5)+(3^6+3^7+3^8)+...+(3^{99}+3^{100}+3^{101})\\=13+3^3\cdot(1+3+3^2)+3^6\cdot(1+3+3^2)+...+3^{99}\cdot(1+3+3^2)\\=13+3^3\cdot13+3^6\cdot13+...+3^{99}\cdot13\\=13\cdot(1+3^3+3^6+...+3^{99})\)
Vì \(13\cdot(1+3^3+3^6...+3^{99}\vdots13\)
nên \(A\vdots13\)
\(\text{#}Toru\)
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
a: \(B=3^1+3^2+...+3^{2010}\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{2009}\right)⋮4\)
\(B=3\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2008}\right)⋮13\)
b: \(C=5^1+5^2+...+5^{2010}\)
\(=5\left(1+5\right)+...+5^{2009}\left(1+5\right)\)
\(=6\left(5+...+5^{2009}\right)⋮6\)
\(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)
\(=31\left(5+...+5^{2008}\right)⋮31\)
c: \(D=7\left(1+7\right)+...+7^{2009}\left(1+7\right)\)
\(=8\left(7+...+7^{2009}\right)⋮8\)
\(D=7\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{2008}\right)⋮57\)
\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)
\(=13+3^3.13+...+3^{96}.13=13\left(1+3^3+...+3^{96}\right)⋮13\)
CMR:
a) B = 1 + 3+ 32 + 33 + 34+...........+320 chia hết cho 13.
BL: Từ 0 \(\rightarrow\) 20 có 21 số.
Nhóm thành: 21 : 3 = 7 (nhóm), mỗi nhóm có 3 số hạng
Ta có: B = (1 + 3 + 32) + (33 + 34 + 35) + ... + (318 + 319 + 320)
\(\Leftrightarrow\) B = 13 + 33 . (1 + 3 + 32) + ... + 318 . (1 + 3 + 32)
\(\Leftrightarrow\) B = 13 + 33 . 13 + ... + 318 . 13
\(\Leftrightarrow\) B = 13 . (1 + 33 + ... + 318)
Rõ ràng B \(⋮\) 13
b) A = 1 + 7 + 72 + 73 + 74+ ... +719 là hợp số.
BL: Từ 0 \(\rightarrow\) 19 có 20 số.
Nhóm thành: 20 : 4 = 5 (nhóm), mỗi nhóm có 4 số hạng
Ta có: A = (1 + 7 + 72 + 73) + (74 + 75 + 76 + 77) + ... + (716 + 717 + 718 + 719)
\(\Leftrightarrow\) A = 400 + 74 . (1 + 7 + 72 + 73) + ... + 716 . (1 + 7 + 72 + 73)
\(\Leftrightarrow\) A = 400 + 74 . 400 + ... + 716 . 400\(\Leftrightarrow\) A = 400 . (1 + 74 + ... + 716)
Rõ ràng A \(⋮\) 400 và A > 400 \(\Rightarrow\) A là hợp số.
Xét từ 1 đến 30 có 30 số hạng
30:3=10( nhóm,mỗi
nhóm có ba số)
Suy ra
(1+3+32)+..................+(328+329+330)
=13.1+...+13.328
=13.(1+...+328)
Rõ ràng chia hêt cho 13
b)Chắc chắn là hợp số vì tông A sẽ chia hết cho các số hạng đã công vào
CHUC HOC TÔT