Chứng tỏ rằng:
x2 + y2 + 6x - 4y + 14 > 0 ∀ x, y ∈ R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2-6x+10>0
<=>x2-6x+9+1>0
<=>(x-3)2+1>0(đúng với mọi x)
vậy x2-6x+10>0 với mọi x
b)x2-2x+y2+4y+6>0
<=>x2-2x+1y2+4y+4+1>0
<=>(x-1)2+(y+2)2+1>0 (với mọi x,y)
Vậy x2-2x+y2+4y+6>0 với mọi x,y
a) x<y
<=> x.x<x.y
<=> x\(^2\)<xy
x<y
<=> x.y<y.y
<=>xy<y\(^2\)
b) áp dụng kết quả từ câu a và tính chất bắc cầu, ta có:
x\(^2\)<xy<y\(^2\)
<=> x\(^2\)<y\(^2\)
x\(^2\)<y\(^2\)
=> x\(^2\).y<y\(^2\).y
<=> x\(^2\)y<y\(^3\)(1)
x\(^2\)<y\(^2\)
=> x\(^2\).x<y\(^2\).x
<=> x\(^3\)<xy\(^2\)(2)
x<y
<=> x.xy<y.xy
<=> x\(^2\)y<xy\(^2\)(3)
Từ (1),(2) và (3) ta có
x\(^3\)<y\(^3\)
\(9x^2-6x+3\)
\(=\left(9x^2-6x+1\right)+2\)
\(=\left(3x-1\right)^2+2\)
Vì \(\left(3x-1\right)^2\ge0\)
\(\Rightarrow\)\(\left(3x-1\right)^2+2>0\)
hay \(9x^2-6x+1>0\)
Ta có :
\(9x^2-6x+3\)
\(=\left(9x^2-6x+1\right)+2\)
\(=\left(3x-1\right)^2+2\)
Mà \(\left(3x-1\right)^2\ge0\forall x\in R\)
\(\Rightarrow\left(3x-1\right)^2+2\ge2>0\forall x\in R\)
Vậy \(9x^2-6x+3>0\forall x\in R\)
Ta có: x 2 – 6x + 10 = x 2 – 2.x.3 + 9 + 1 = x - 3 2 + 1
Vì x - 3 2 ≥ 0 với mọi x nên x - 3 2 + 1 > 0 mọi x
Vậy x 2 – 6x + 10 > 0 với mọi x.(đpcm)
Giải:
a) \(x^2+xy+y^2+1\)
\(=x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
\(=\left(x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2\right)+\dfrac{3y^2}{4}+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\ge1>0;\forall x\)
Vậy ...
Hắc Hường BĐT ở đây. Cj nghĩ cấp 2 chỉ học 1 số loại này thôi
1.BĐT Cauchy
\(A+B\ge2\sqrt{AB}\) (Áp dụng cho 2 số k âm)
\(A+B+C\ge3\sqrt[3]{ABC}\) (Áp dụng cho 3 số k âm )
2.BĐT Bunhiacopxki
\(\left(Ax+By\right)^2\le\left(A^2+B^2\right)\left(x^2+y^2\right)\)
3.BĐT Mincopxki
\(\sqrt{A^2+x^2}+\sqrt{B^2+y^2}\ge\sqrt{\left(A+B\right)^2+\left(x+y\right)^2}\)
4.BĐT Chebyshev
Với A>B, x>y thì
\(\left(A+B\right)\left(x+y\right)\le2\left(ax+by\right)\)
Vs 3 sô thì bên vế phải thay 2 bằng 3
5.BĐT Benuli
\(\left(1+h\right)^n\ge1+nh\)
6.BĐT Holder
Với a,b,c,x,y,z,m,n,p là sô thực dương
\(\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)\ge\left(axm+byn+czp\right)^3\)
7.BĐT Sơ-vác-sơ
\(\dfrac{a_1^2}{b_1}+\dfrac{a^2_2}{b_2}+...+\dfrac{a^2_n}{b_n}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\)
8. \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
9. \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)
10. \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)
11. \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\ge4xy\)
12. \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)13. \(a^3+b^3\ge a^2b+ab^2\)
14. \(\dfrac{a^3}{b}\ge a^2+ab-b^2\)( Ít áp dụng )
15. \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\left|a\right|-\left|b\right|\le\left|a-b\right|\)
\(\left|\dfrac{x}{y}\right|+\left|\dfrac{y}{x}\right|\ge\left|\dfrac{x}{y}+\dfrac{y}{x}\right|\ge2\)
16. \(a^2+b^2+c^2\ge ab+ac+bc\)
\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\)
Ta có: \(2x^2+4y^2+4xy-6x+10\)\(=x^2+4xy+4y^2+x^2-6x+9+1\)\(=\left(x+2y\right)^2+\left(x-3\right)^2+1\)
Vì \(\left(x+2y\right)^2\ge0;\left(x-3\right)^2\ge0\)\(\Rightarrow\left(x+2y\right)^2+\left(x-3\right)^2\ge0\)\(\Leftrightarrow\left(x+2y\right)^2+\left(x-3\right)^2+1\ge1>0\)\(2x^2+4y^2+4xy-6x+10>0\left(đpcm\right)\)
CMR: \(\frac{1}{x}+\frac{1}{y}\le2\) biết \(^{x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0}\) và xy>0
a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)
\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)
\(=3x^2+3y^2=3\)
b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)
c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)
d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)
=9-12+1
=-2
chữ và số đẹp thế