K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2021

a)

\(C=x^2+x-2\)

\(=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-2-\left(\frac{1}{2}\right)^2\)

\(=\left(x+\frac{1}{2}\right)^2-\frac{9}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)

Vậy \(C_{Min}=-\frac{9}{4}\)khi và chỉ khi\(\left(x+\frac{1}{2}\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)

b)

\(D=x^2+y^2+x-6y+5\)

\(=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+y^2-2.y.3+3^2+5-\left(\frac{1}{2}\right)^2-3^2\)

\(=\left(x+\frac{1}{2}\right)^2+\left(y-3\right)^2-\frac{17}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\left(y-3\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\left(y-3\right)^2-\frac{17}{4}\ge-\frac{17}{4}\)

Vậy \(D_{Min}=-\frac{17}{4}\)khi và chỉ khi \(\hept{\begin{cases}\left(x+\frac{1}{2}\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}\)

c)

\(E=x^2+10y^2-6xy-10y+26\)

\(=x^2-2.x.3y+\left(3y\right)^2+y^2-2.y.5+5^2+26-5^2\)

\(=\left(x-3y\right)^2+\left(y-5\right)^2+1\)

\(\left(x-3y\right)^2+\left(y-5\right)^2\ge0\Rightarrow\left(x-3y\right)^2+\left(y-5\right)^2+1\ge1\)

Vậy \(E_{Min}=1\)khi và chỉ khi\(\hept{\begin{cases}\left(x-3y\right)^2=0\\\left(y-5\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=15\\y=5\end{cases}}}\)

a: Xét ΔADM và ΔCBN có 

AD=CB

\(\widehat{DAM}=\widehat{BCN}\)

AM=CN

Do đó: ΔADM=ΔCBN

Suy ra: DM=BN

4 tháng 3 2022

41. have been used
42. making
43. driving
44. be finished
45. to post
46. mending
47. is being sung
48. work
49. were blown
50. do
51. will
52. were reading
53. has bought
54. listening
55. stopped
56. is spoken
57. to practice

17 tháng 5 2021

1. A

2. D

3. B

4. B

5. C

6. B

7. B

8. B

9. D

10. B

17 tháng 5 2021

1A 2D 3B 4B 5C 6B 7B 8B 9D 10B

13 tháng 8 2021

Câu 1

a)=\(8\sqrt{3}-10\sqrt{3}+15\sqrt{3}=13\sqrt{3}\)

b)=\(4\sqrt{x}+6\sqrt{x}-6\sqrt{x}=4\sqrt{x}\)

c)=\(21\sqrt{2}+8\sqrt{2}-28\sqrt{2}=\sqrt{2}\)

d)\(\Rightarrow\)\(8\sqrt{2\sqrt{3}}-\sqrt{5\sqrt{3}}-4\sqrt{5\sqrt{3}}\)

\(\Rightarrow\)\(8\sqrt{2\sqrt{3}}-5\sqrt{5\sqrt{3}}\)

câu 2

a)\(\Rightarrow4x=64\)\(\Rightarrow x=16\)

b)\(\Rightarrow9x\le36\)\(\Rightarrow x\le4\)

Câu 2: 

a: Ta có: \(\sqrt{4x}=8\)

\(\Leftrightarrow4x=64\)

hay x=16

b: Ta có: \(\sqrt{9x}\le6\)

\(\Leftrightarrow9x\le36\)

\(\Leftrightarrow x\le4\)

Kết hợp ĐKXĐ, ta được: \(0\le x\le4\)

a: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7\cdot b^2k^2+3\cdot bk\cdot b}{11\cdot b^2k^2-8\cdot b^2}=\dfrac{b^2k\left(7k+3\right)}{b^2\left(11k^2-8\right)}=\dfrac{k\left(7k+3\right)}{11k^2-8}\)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\cdot d^2k^2+3\cdot dk\cdot d}{11\cdot d^2k^2-8d^2}=\dfrac{k\left(7k+3\right)}{11k^2-8}\)

Do đó: \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)

c: \(\dfrac{3a+2c}{3b+2d}=\dfrac{3bk+2dk}{3b+2d}=k\)

\(\dfrac{a}{b}=\dfrac{bk}{b}=k\)

Do đó: \(\dfrac{a}{b}=\dfrac{3a+2c}{3b+2d}\)

Em cần giúp câu nào hả em? Em nên chụp 1-2 ý cho 1 lần hỏi nhá, như thế mọi người sẽ dễ dàng giúp em hơn

12 tháng 5 2021

13

a, \(3x-4=-x+8\)

\(< =>3x+x=8+4\)

\(< =>4x=12\)

\(< =>x=\frac{12}{4}=3\)

b, \(\frac{2x+1}{6}+\frac{x-7}{12}=10\)

\(< =>\frac{2\left(2x+1\right)}{12}+\frac{x-7}{12}=\frac{120}{12}\)

\(< =>4x+2+x-7=120\)

\(< =>5x=120+5=125\)

\(< =>x=\frac{125}{5}=\frac{5^3}{5}=5^2=25\)