K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 11 2017

Lời giải:

Từ giả thiết đề bài suy ra $M$ là trung điểm của $BD$ và $N$ là trung điểm của $EC$

Xét tứ giác $ADCB$ có hai đường chéo $AC$ và $BD$ cắt nhau tại trung điểm $M$ nên $ADCB$ là hình bình hành:

\(\Rightarrow AD=BC(1)\)

Xét tứ giác $AEBC$ có hai đường chéo $AB$ và $CE$ cắt nhau tại trung điểm $N$ của mỗi đường nên $AEBC$ là hình bình hành

\(\Rightarrow AE=BC(2)\)

a) Từ (1),(2) suy ra \(AD=AE\)

b) Vì \(ADCB,AEBC\) là hình bình hành nên \(AE\parallel BC, AD\parallel BC\Rightarrow A,E,D\) thẳng hàng

Mà \(AE=AD\) (theo phần a) nên $A$ là trung điểm của $ED$

Do đó ta có đpcm.

27 tháng 11 2017

thua co em chua hoc hinh binh hanh cô có thể giải theo Trường hợp bằng nhau thứ hai của tam giác cạnh - góc dc ko ak

28 tháng 11 2017

oe

a: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AD//BC và AD=BC(1)

Xét tứ giác AEBC có 

N là trung điểm của AB

N là trung điểm của EC

Do đó: AEBC là hình bình hành

Suy ra: AE//BC và AE=BC(2)

Từ (1) và (2) suy ra AD=AE

b: Ta có: AD//BC

AE//BC

mà AD cắt AE tại A

nên A,D,E thẳng hàng

3 tháng 1 2016

chtt

11 tháng 12 2019

giup minh voi

11 tháng 2 2020

  Xét ΔABM và  ΔCDM có:
AM = MC ( vì M là trung điểm của AC)
BM = MD ( theo giả thiết -cách vẽ)
góc AMB = góc CMD ( đối đỉnh)
suy ra ΔABM = ΔCDM ( c-g-c)

=> IA = IB ( dpcm )

#B