Thực hiện phép tính :
a) \(\dfrac{1}{x-2y}+\dfrac{8y^2}{4y^2x-x^3}+\dfrac{1}{x+2y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =-4xyz^2
b: =-9x^2y
c: =16x^2y^2
d: =1/6x^2y^3
e: =13/6x^3y^2
f: =7/12x^4y
a) -xyz² - 3xz.yz
= -xyz² - 3xyz²
= -4xyz²
b) -8x²y - x.(xy)
= -8x²y - x²y
= -9x²y
c) 4xy².x - (-12x²y²)
= 4x²y² + 12x²y²
= 16x²y²
d) 1/2 x²y³ - 1/3 x²y.y²
= 1/2 x²y³ - 1/3 x²y³
= 1/6 x²y³
e) 3xy(x²y) - 5/6 x³y²
= 3x³y² - 5/6 x³y²
= 13/6 x³y²
f) 3/4 x⁴y - 1/6 xy.x³
= 3/4 x⁴y - 1/6 x⁴y
= 7/12 x⁴y
a) \(\dfrac{15x}{7y^3}.\dfrac{2y^2}{x^2}=\dfrac{15x.2y^2}{7y^3.x^2}=\dfrac{30}{7xy}\)
b) \(\dfrac{4y^2}{11x^4}.\left(-\dfrac{3x^2}{8y}\right)=\dfrac{-4y^2.3x^2}{11x^4.8y}=\dfrac{-3y}{22x^2}\)
c) \(\dfrac{x^3-8}{5x+20}.\dfrac{x^2+4x}{x^2+2x+4}\\ =\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{5\left(x+4\right)}.\dfrac{x\left(x+4\right)}{x^2+2x+4}\\ =\dfrac{x^2-2x}{5}\)
Lời giải:
\(\frac{2}{x^2y}-\frac{4xy^2-1}{2x^3y^3}=\frac{4xy^2}{2x^3y^3}-\frac{4xy^2-1}{2x^3y^3}=\frac{4xy^2-(4xy^2-1)}{2x^3y^3}=\frac{1}{2x^3y^3}\)
a: =-1/5x^5y^2
b: =-9/7xy^3
c: =7/12xy^2z
d: =2x^4
e: =3/4x^5y
f: =11x^2y^5+x^6
a: \(=\dfrac{x+2y}{xy}\cdot\dfrac{2x^2}{\left(x+2y\right)^2}=\dfrac{2x}{y\left(x+2y\right)}\)
b: \(=\dfrac{x\left(4x^2-y^2\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)\left(2x-y\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)}{\left(2x-y\right)^2}\)
c: \(=\dfrac{x+3}{x+2}\cdot\dfrac{2x-1}{3\left(x+3\right)}\cdot\dfrac{2\left(x+2\right)}{2\left(2x-1\right)}\)
=1/3
d: \(=\dfrac{x+1}{x+2}:\left(\dfrac{1}{2x}\cdot\dfrac{3x+3}{2x-3}\right)\)
\(=\dfrac{x+1}{x+2}\cdot\dfrac{2x\left(2x-3\right)}{3\left(x+1\right)}=\dfrac{2x\left(2x-3\right)}{3\left(x+2\right)}\)
\(\dfrac{1}{2}x.\dfrac{1}{4}x^2.\dfrac{x^3}{8}.2y.4y-8y^3=x.x^2.x^3.y.y.\dfrac{2.4}{2.4.8}-8y^3\\ =x^6.y^2.\dfrac{1}{8}-8y^3\)
\(=\dfrac{1}{2}\cdot\dfrac{1}{4}\cdot\dfrac{1}{8}\cdot x^3\cdot x^3\cdot8y^2-8y^3\)
\(=\dfrac{1}{8}x^6y^2-8y^3\)
Tớ làm luôn nhé , không chép lại đề đâu
\(\dfrac{x+2y+x-2y}{\left(x-2y\right)\left(x+2y\right)}+\dfrac{8y^2}{x\left(4y^2-x^2\right)}\)
\(=\dfrac{2x}{\left(x-2y\right)\left(x+2y\right)}-\dfrac{8y^2}{x\left(x-2y\right)\left(x+2y\right)}\)
=\(\dfrac{2x^2-8y^2}{x\left(x+2y\right)\left(x-2y\right)}=\dfrac{2\left(x^2-4y^2\right)}{x\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{2\left(x-2y\right)\left(x+2y\right)}{x\left(x-2y\right)\left(x+2y\right)}=\dfrac{2}{x}\)