Tìm một STN a thỏa mãn: a chia hết cho 7 và a chia cho 4 hoặc 6 đều dư 3, biết rằng a<350
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo bài ra ta có:a-3chia hết cho 4,6,7 và a,350
=>a-3 là bội chung của 4,6,7
ta có:bcnn(4,6,7)=168
=>bc(4,6,7)={0,168,336,..,}
do:a-3<347
=>a-3=168 hoặc336
=>a=171hoặc339
Khi đó a+2 chia hết cho 7 và 6 suy ra x+2 thuộc BC(7;6)
Ta có:7=7
6=2.3 Suy ra BCNN(7;6)=7.2.3=42
a+2 thuộc BC(7;6)={0;42;84;....}
a thuộc{40;82;...}
Mà a<350 nên a thuộc {42;84;124;334}
Theo đề ta có :
\(\left\{{}\begin{matrix}a⋮7\\a-1⋮4\\a-1⋮6\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a-49⋮7\\a-1-48⋮4\\a-1-48⋮6\end{matrix}\right.\\ \Rightarrow a-49⋮7;4;6\\ \Rightarrow a-49\in B\left(BCNN\left(7;4;6\right)\right)\in\left\{0;84;168;252;336;420;...\right\}\\ \Rightarrow a+49\in\left\{49;133;217;301;385;459;..\right\}\)
Loai những TH > 400.
Ta thấy số chia cho 4,5,6 mà dư 1 tức là tận cùng bằng số 1
Như vậy số trên có dạng ab1
Phân tích thành : A = 100a + 10 b + 1
= 98a + 2a + 7b + 3b + 1 - Giản lược các số đã chia hết cho 7. Ta còn lại 2a + 3b + 1
Mà số trên chia hết cho 7 nên 2a + 3 b + 1 chia hết cho 7
Do số trên nhỏ hơn 400 nên ta chỉ có số 301
KẾT LUẬN : 301
x chia hết cho 5 suy ra x là BCNN(5)
5=5
=> B(5): { 0,5,10,15,20,25,30,35,40,45,50,55,...........,705,800...}
mà x thuộc N, 700<x<800
Vây x= 705
1.đặt ƯCLN(2n+3,3n+4)=d
suy ra 2n+3 chia hết cho d và 3n+4chia hết cho d
suy ra 3*(2n+3)-2*(3n+4)=6n+9-6n+8=1 chia hết cho d
suy ra d= 1
vậy (2n+3,3n+4)=1
câu 2 tau tự mần đúng hay sai kệ mi nả
2 a chia cho 7 , 4 ,6 đều dư 1
suy ra a-1 chia hết cho 7, a -1 chia hết 4 , a-1 chia hết cho 6
suy ra a-1 thuộc BC(7,4,6)
mà 7=1*7
4=22
6=2*3
suy ra BCNN (7,4,6 )=84
suy ra BC(7,4,6)=B(84)
={84,168,252,336,420,....}
suy ra a-1 thuộc{84,168,252,336,420,...}
mặt khác ta có a <400
suy ra a-1 thuộc {84,168,252,336}
suy ra a thuộc {85,169,253,337}
Vì a:7,4,6 đều dư 3 nên ta tìm BCNN(7,4,6) rồi cộng thêm3
BCNN(7,4,6)=84+3=87
Thử: 87:7=12 dư 3
87:4=21 dư3
87:6=14 dư 3
Vậy đáp án là 87 thỏa mãn đề bài
Chúc bạn hoc tốt !