K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2017

2/

\(x^3-2x+1=0\)

\(\Rightarrow x^3-x-x+1=0\)

\(\Rightarrow x\left(x^2-1\right)-\left(x-1\right)=0\)

\(\Rightarrow x\left(x-1\right)\left(x+1\right)-\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x^2+x-1\right)\)

\(\Rightarrow x=1\)

Vậy S = {1}

12 tháng 11 2023

a:

ĐKXĐ: \(x\notin\left\{\dfrac{3}{2};1\right\}\)

 \(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}=\dfrac{x^2-4x+4}{2x^2-2x-3x+3}\)

=>\(y=\dfrac{x^2-4x+4}{2x^2-5x+3}\)

=>\(y'=\dfrac{\left(x^2-4x+4\right)'\left(2x^2-5x+3\right)-\left(x^2-4x+4\right)\left(2x^2-5x+3\right)'}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{\left(2x-4\right)\left(2x^2-5x+3\right)-\left(2x-5\right)\left(x^2-4x+4\right)}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{4x^3-10x^2+6x-8x^2+20x-12-2x^3+8x^2-8x+5x^2-20x+20}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{2x^3-5x^2-2x+8}{\left(2x^2-5x+3\right)^2}\)

b:

ĐKXĐ: x<>-3

 \(y=\left(x+3\right)+\dfrac{4}{x+3}\)

=>\(y'=\left(x+3+\dfrac{4}{x+3}\right)'=1+\left(\dfrac{4}{x+3}\right)'\)

\(=1+\dfrac{4'\left(x+3\right)-4\left(x+3\right)'}{\left(x+3\right)^2}\)

=>\(y'=1+\dfrac{-4}{\left(x+3\right)^2}=\dfrac{\left(x+3\right)^2-4}{\left(x+3\right)^2}\)

y'=0

=>\(\left(x+3\right)^2-4=0\)

=>\(\left(x+3+2\right)\left(x+3-2\right)=0\)

=>(x+5)(x+1)=0

=>x=-5 hoặc x=-1

c:

ĐKXĐ: x<>-2

 \(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\)

=>\(y=\dfrac{5x^2+5x-x-1}{x+2}=\dfrac{5x^2+4x-1}{x+2}\)

=>\(y'=\dfrac{\left(5x^2+4x-1\right)'\left(x+2\right)-\left(5x^2+4x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{\left(5x+4\right)\left(x+2\right)-\left(5x^2+4x-1\right)}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{5x^2+10x+4x+8-5x^2-4x+1}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{10x+9}{\left(x+2\right)^2}\)

\(y'\left(-1\right)=\dfrac{10\cdot\left(-1\right)+9}{\left(-1+2\right)^2}=\dfrac{-1}{1}=-1\)

d: 

ĐKXĐ: x<>2

\(y=x-2+\dfrac{9}{x-2}\)

=>\(y'=\left(x-2+\dfrac{9}{x-2}\right)'=1+\left(\dfrac{9}{x-2}\right)'\)

\(=1+\dfrac{9'\left(x-2\right)-9\left(x-2\right)'}{\left(x-2\right)^2}\)

=>\(y'=1+\dfrac{-9}{\left(x-2\right)^2}=\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}\)

y'=0

=>\(\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}=0\)

=>\(\left(x-2\right)^2-9=0\)

=>(x-2-3)(x-2+3)=0

=>(x-5)(x+1)=0

=>x=5 hoặc x=-1

16 tháng 6 2017

Ta có  f ' ( x ) = 3 x 2 + 2 x ,  g ' ( x ) = 2 x 2 + x + 2

f ' ( x ) < ​ g ' ​ ( x ) ⇔ 3 x 2 + 2 x < 2 x 2 + x + 2 ⇔ 3 x 2 + 2 x − 2 x 2 − x − 2 < 0 ⇔ x 2 + x − 2 < 0 ⇔ − 2 < x < 1

Vậy tập nghiệm bất phương trình là: S=(-2 ; 1).

Chọn đáp án B

2 tháng 6 2021

$\begin{cases}x+\dfrac{2}{|y-1|}=5\\2x-\dfrac{3}{|y-1|}=0\end{cases}$

`<=>` $\begin{cases}3x+\dfrac{6}{|y-1|}=15\\4x-\dfrac{6}{|y-1|}=0\end{cases}$

`<=>` $\begin{cases}7x=15\\2x-\dfrac{3}{|y-1|}=0\end{cases}$

`<=>` $\begin{cases}x=\dfrac{15}{7}\\\dfrac{3}{|y-1|}=2x=\dfrac{30}{7}\end{cases}$

`<=>` $\begin{cases}x=\dfrac{15}{7}\\\dfrac{1}{|y-1|}=\dfrac{10}{7}\end{cases}$

`<=>` $\begin{cases}x=\dfrac{15}{7}\\|y-1|=\dfrac{7}{10}\end{cases}$

`<=>`$\begin{cases}x=\dfrac{15}{7}\\\left[ \begin{array}{l}y=\dfrac{17}{10}\\y=\dfrac{3}{10}\end{array} \right.\end{cases}$

`<=>` \(\left[ \begin{array}{l}\begin{cases}x=\dfrac{15}{7}\\y=\dfrac{17}{10}\end{cases}\\\begin{cases}x=\dfrac{15}{7}\\y=\dfrac{3}{10}\end{cases}\end{array} \right.\) 

Vậy hệ phương trình có nghiệm `(x,y)=(15/7,17/10),(15/7,3/10)`

Bài 2: 

a) Ta có: \(\Delta=\left(m-1\right)^2-4\cdot1\cdot\left(-m^2-2\right)\)
\(=m^2-2m+1+4m^2+8\)

\(=5m^2-2m+9>0\forall m\)

Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m

6 tháng 4 2021

Bài 1:

ĐKXĐ \(2x\ne y\)

Đặt \(\dfrac{1}{2x-y}=a;x+3y=b\)

HPT trở thành

\(\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\4a-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\4\left(\dfrac{3}{2}-b\right)-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\6-9b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{8}{9}\\a=\dfrac{11}{18}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\dfrac{8}{9}\\2x-y=\dfrac{18}{11}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2x-\dfrac{18}{11}\\x+3\left(2x-\dfrac{18}{11}\right)=\dfrac{8}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{82}{99}\\y=\dfrac{2}{99}\end{matrix}\right.\)

6 tháng 7 2021

a) x2 - 4y2 tại x = 102 , y = \(\dfrac{1}{2}\)

= x2 - (2y)2

= (x - 2y)(x + 2y)

Thay x = 102 , y = \(\dfrac{1}{2}\) vào , ta có :

(x - 2y)(x + 2y)

= (102 - 2.\(\dfrac{1}{2}\))(102 + 2 . \(\dfrac{1}{2}\))

= 101 . 103

= 10403 

b)Bạn xem lại đề b),c) có bị thiếu không, nên mình bổ sung thêm nhé :

     8x3 + 12x2 + 6x + 1 tại x = \(\dfrac{29}{2}\)

= (2x)3 + 3.(2x2).1 + 3.2x.1 + 1

= (2x + 1)3

Thay x = \(\dfrac{29}{2}\) vào , ta có :

(2x + 1)3

= (2.\(\dfrac{29}{2}\) + 1)3

= (29 + 1)3

= 27000

c) x3 - 6x + 12x - 1 tại x = 102

= x3 - 3.x2.2 + 3.x.22 - 23

= (x - 2)3

Thay x = 102 vào , ta có :

(x - 2)3

= (102 - 2)3

= 1000000

 Chúc bạn học tôt

6 tháng 7 2021

thanks bn

 

Bài 2: 

b) Phương trình hoành độ giao điểm của (P) và (d) là:

\(2x^2=-x+3\)

\(\Leftrightarrow2x^2+x-3=0\)

\(\Leftrightarrow2x^2-2x+3x-3=0\)

\(\Leftrightarrow2x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Thay x=1 vào hàm số \(y=2x^2\), ta được:

\(y=2\cdot1^2=2\)

Thay \(x=-\dfrac{3}{2}\) vào hàm số \(y=2x^2\), ta được:

\(y=2\cdot\left(-\dfrac{3}{2}\right)^2=2\cdot\dfrac{9}{4}=\dfrac{9}{2}\)

Vậy: Tọa độ giao điểm của (p) và (D) là (1;2) và \(\left(-\dfrac{3}{2};\dfrac{9}{2}\right)\)

a. (3x - 1)2 - (x + 3)2 = 0

\(\Leftrightarrow\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)

\(\Leftrightarrow\left(4x+2\right)\left(2x-4\right)=0\)

\(\Leftrightarrow4x+2=0\)  hoặc  \(2x-4=0\)

1. \(4x+2=0\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\)

2. \(2x-4=0\Leftrightarrow2x=4\Leftrightarrow x=2\)

S=\(\left\{-\dfrac{1}{2};2\right\}\)

 

b. \(x^3=\dfrac{x}{49}\)

\(\Leftrightarrow49x^3=x\)

\(\Leftrightarrow49x^3-x=0\)

\(\Leftrightarrow x\left(49x^2-1\right)=0\)

\(\Leftrightarrow x\left(7x+1\right)\left(7x-1\right)=0\)

\(\Leftrightarrow x=0\) hoặc  \(7x+1=0\) hoặc \(7x-1=0\)

1. x=0

2. \(7x+1=0\Leftrightarrow7x=-1\Leftrightarrow x=-\dfrac{1}{7}\)

3. \(7x-1=0\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)

1) Ta có: \(\left\{{}\begin{matrix}2x-y=3\\x+y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=3\\x=-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-x=-1\end{matrix}\right.\)

Vậy: (x,y)=(1;-1)

2) Ta có: \(A=\dfrac{x+20}{x-4}+\dfrac{2}{\sqrt{x}+2}-\dfrac{6}{\sqrt{x}-2}\)

\(=\dfrac{x+20+2\left(\sqrt{x}-2\right)-6\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+20+2\sqrt{x}-4-6\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)