Cho a,b,c thuộc Z và a+b+c=4. C/m M= (a+b)(b+c)(c+a)-abc chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc
=(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc
=ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc
=(a+b+c)(ab+ac+bc)-2abc
thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4 (1)
Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4 (2)
Tù (1) và (2)=>P chia hết cho 4
Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc
=(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc
=ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc
=(a+b+c)(ab+ac+bc)-2abc
thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4 (1)
Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4 (2)
Tù (1) và (2)=>P chia hết cho 4
Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc
=(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc
=ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc
=(a+b+c)(ab+ac+bc)-2abc
thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4 (1)
Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4 (2)
Tù (1) và (2)=>P chia hết cho 4