Trên cạnh Ax và Ay của \(\widehat{xAy}\) , lần lượt lấy các điểm B và c sao cho AB = AC . Gọi M là trung điểm của đoạn thẳng BC . CMR:
1, \(\widehat{ABC}=\widehat{ACB}\)
2, \(\widehat{AMB}=\widehat{AMC}=90^0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HD : xét 2 góc DAC và góc BAE
^DAB+^BAC=^DAC
^CAE+^BAC=^BAE
^DAB=^CAE=90o
=> ^DAC=^BAE
sau đó cm \(\Delta DAC=\Delta BAE\)=> câu a
b) cm DKE =90o
2 câu c ; d dễ tự làm!
Trên tia AM lấy điểm A’ sao cho AM = MA’
Dễ chứng minh được ∆AMC = ∆A’MB ( g.c.g)
A’B = AC ( = AE) và góc MAC = góc MA’B
AC // A’B => góc BAC + góc ABA’ = 180 0 (cặp góc trong cùng phía)
Mà góc DAE + góc BAC = 180 0 => góc DAE = góc ABA’
Xét ∆DAE và ∆ABA’ có : AE = A’B , AD = AB (gt)
góc DAE = góc ABA’ ∆DAE = ∆ABA’(c.g.c)
góc ADE = góc BAA’ mà góc HAD + góc BAA’ = 90 0
=> góc MAD + góc ADE = 90 0 . Suy ra MA vuông góc với DE
Bạn tự vẽ hình nhé !
\(\Delta AMB,\Delta AMC\)có chung AM , AB = AC , MB = MC (M là trung điểm BC) =>\(\Delta AMB=\Delta AMC\left(c.c.c\right)\)
\(\Rightarrow\widehat{ABM}=\widehat{ACM}\)(2 góc tương ứng) ;\(\frac{\widehat{AMB}}{1}=\frac{\widehat{AMC}}{1}=\frac{\widehat{AMB}+\widehat{AMC}}{1+1}=\frac{180^0}{2}=90^0\Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\)
Xét \(\Delta AMB;\Delta BMC\) có :
\(\left\{{}\begin{matrix}AB=BC\left(gt\right)\\BM=MC\\BMchung\end{matrix}\right.\)
\(\Leftrightarrow\Delta AMB=\Delta MBC\left(c-c-c\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{ACB=CAB\left(đpcm\right)}\\\widehat{M1=\widehat{M2}}\end{matrix}\right.\)
b/ Mà \(\widehat{M1}+\widehat{M2}=180^0\left(kềbuf\right)\)
\(\Leftrightarrow\widehat{M1}=\widehat{M2}=\dfrac{180^0}{2}=90^0\left(đpcm\right)\)