Tìm số tự nhiên n sao cho :
a) n+8 chia hết n+3
b) n+6 chia hết n-1
c) 12-n chia hết 8-n
d) 4n-5 chia hết cho 2n-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-8;-4;-2;2\right\}\\ b,\Rightarrow n+3+5⋮n+3\\ \Rightarrow5⋮n+3\\ \Rightarrow n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-8;-4;-2;2\right\}\\ c,\Rightarrow2\left(2n-1\right)-3⋮2n-1\\ \Rightarrow3⋮2n-1\\ \Rightarrow2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Rightarrow n\in\left\{-1;0;1;2\right\}\\ d,\Rightarrow8-n+4⋮8-n\\ \Rightarrow4⋮8-n\\ \Rightarrow8-n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\\ \Rightarrow n\in\left\{12;10;9;7;6;4\right\}\)
4n - 5 chia hết cho 2n + 1
=> 4n + 2 - 7 chia hết cho 2n + 1
Mà 4n + 2 chia hết cho 2n + 1
=> -7 chia hết cho 2n + 1
a)4n-5 chia hết cho 2n+1
=>4n+2-7 chia hết cho 2n-1
=>-7 chia hết cho 2n-1
=> 2n+1 thuộc vào tập hợp Ư(7)=(1;-1;7;-7)
ta có bảng sau
2n+1 | 1 | -1 | 2 | -2 |
n | 0 | -19 loại | 1/2(loại) | 3/2(loại) |
vậy..................................................................................................................
b) 12- n chia hết cho 8-n
=>4+8- n chia hết cho 8-n
=>8-n thuộc Ư(4)=(1;-1;2;-2;4;-4)
ta có bảng sau:
8-n | 1 | -1 | 2 | -2 | 4 | -4 |
n | 7 | 9 | 6 | 10 | 4 | 12 |
vậy.....................................................................................................................
Giải:
a) Ta có:
\(n+8⋮n+3\)
\(\Rightarrow\left(n+3\right)+5⋮n+3\)
\(\Rightarrow5⋮n+3\)
\(\Rightarrow n+3\in\left\{1;5\right\}\) ( vì n là số tự nhiên )
+) \(n+3=1\Rightarrow n=-2\) ( loại )
+) \(n+3=5\Rightarrow n=2\) ( chọn )
Vậy n = 2
b) Ta có:
\(n+6⋮n-1\)
\(\Rightarrow\left(n-1\right)+7⋮n-1\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\in\left\{1;7\right\}\) ( vì n là số tự nhiên )
+) \(n-1=1\Rightarrow n=2\)
+) \(n-1=7\Rightarrow n=8\)
Vậy n = 2 hoặc n = 8
c) Ta có:
\(4n-5⋮2n-1\)
\(\Rightarrow\left(4n-2\right)-3⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)
\(\Rightarrow-3⋮2n-1\)
\(\Rightarrow2n-1\in\left\{1;3\right\}\) ( vì n là số tự nhiên )
+) \(2n-1=1\Rightarrow n=1\)
+) \(2n-1=3\Rightarrow n=2\)
Vậy n = 1 hoặc n = 2
a) \(n+8⋮n+3\)
\(\Leftrightarrow\left(n+3\right)+5⋮n+3\)
Vậy để n+8 chia hết cho n+3 thì: n+3 thuộc Ư(5)
Mà Ư(5)={-1;1;5;-5}
=>n+3={1;-1;5;-5}
+)n+3=1<=|>n=-2
+)n+3=-1<=>n=-4
+)n+3=5<=>n=2
+)n+3=-5<=>n=-8
Vậy n={-8;-4;-2;2}
b) n+6 chia hết cho n-1
<=> (n-1)+7 chia hết cho n-1
Vậy để n+6 chia hết cho n-1 thì : n-1 thuộc Ư(7)
Mà: Ư(7)={1;-1;7;-7}
=> n-1={-1;1;7;-7}
+) n-1=1<=>n=2
+)n-1=-1<=>n=0
+)n-1=7<=>n=8
+)n-1=-7<=>n=-6
Vậy n={-6;0;2;8}
c) 4n-5 chia hết cho 2n-1
<=> 2(2n-1)-5 chia hết cho 2n-1
Để 4n-5 chia hết cho 2n-1 thì 2n-1 thuộc Ư(5)
Mà Ư(5)={1;-1;5;-5}
=>2n-1={1;-1;5;-5}
+)2n-1=-1<=>n=0
+)2n-1=1<=>n=1
+)2n-1=5<=>n=3
+)2n-1=-5<=>n=-2
Vậy n={-2;0;1;3)
d) TT
a) \(\frac{4n+3}{2n+1}=\frac{4n+2+1}{2n+1}=2+\frac{1}{2n+1}\)
Để có phép chia hết thì \(1⋮2n+1\Leftrightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
b) \(\frac{3n-5}{4n+8}=\frac{3n+6-11}{4n+8}=\frac{3}{4}-\frac{11}{4n+8}\)
Để có phép chia hết thì \(11⋮4n+8\Leftrightarrow4n+8\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
c) \(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=1+\frac{4}{n-1}\)
Để có phép chia hết thì \(4⋮n-1\Leftrightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
d) \(\frac{3n+1}{11-n}=\frac{3n-33+34}{11-n}=-1+\frac{34}{11-n}\)
Để có phép chia hết thì \(34⋮11-n\Leftrightarrow11-n\inƯ\left(34\right)=\left\{\pm1;\pm2;\pm17;\pm34\right\}\)
Lập bảng xét giá trị cho từng trường hợp
n + 8 chia hết cho n + 3
=> n + 3 + 5 chia hết cho n + 3
=> n + 3 thuộc Ư ( 5 )
=> n + 3 = { 1 , - 1 , 5 , -5 )
=> n = { -2 , - 4 , 2 , -8 }
mấy câu kia tương tự
a) n + 2 chia hết cho n - 1
=> n - 1 + 3 chia hết cho n - 1
Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1
Mà n thuộc N => n - 1 > hoặc = -1
=> n - 1 thuộc {-1 ; 1 ; 3}
=> n thuộc {0 ; 2 ; 4}
Những câu còn lại lm tương tự
Giải:
a) \(n+2⋮n-1\)
\(\Rightarrow\left(n-1\right)+3⋮n-1\)
\(\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)
+) \(n-1=1\Rightarrow n=2\)
+) \(n-1=-1\Rightarrow n=0\)
+) \(n-1=3\Rightarrow n=4\)
+) \(n-1=-3\Rightarrow n=-2\)
Vậy \(n\in\left\{2;0;4;-2\right\}\)
b) \(2n+7⋮n+1\)
\(\Rightarrow\left(2n+2\right)+5⋮n+1\)
\(\Rightarrow2\left(n+1\right)+5⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=-1\Rightarrow n=-2\)
+) \(n+1=3\Rightarrow n=2\)
+) \(n+1=-3\Rightarrow n=-4\)
Vậy \(n\in\left\{0;-2;2;-4\right\}\)
Vì 3 n chia hết cho (5-2n)
=>2.3n+3(5-2n)=15 chia hết cho 5-2n
=>5-2n thuộc Ư(15)={1,3,5,15,-1,-3-5-15}
Mặt khác 5-2n nhỏ hơn hoặc bằng 5
5-2n thuộc {-15,-5,-3,-1,1,3,5}
=>N thuộc { 10,5,4,3,2,1,0}
Vì 3n chia hết cho 5-2n
=>2.3n+3(5-2n)=15 chia hết cho 5 - 2n
=> 5-2n thuộc U (15)€{1,3,5,15,-1,-3,-5,-15}
Mặt khác 5 trừ 2 n nhỏ hơn hoặc bằng 5
=>5-2n€{-15,-5,-3,-1,1,3,5}
=>N€{10,5,4,3,2,1,0}
Viết thế này dễ nhìn nefk (n+2)/(n-1) =(n-1+3)/(n-1)
=1+3/(n-1) vì n+2 chia cho n-1 =1 dư 3/(n-1)
để n+2 chia hết cho n-1 thì 3/(n-1) là số nguyên
3/(n-1) nguyên khi (n-1) là Ước của 3
khi (n-1) ∈ {±1 ; ±3}
xét TH thôi :
n-1=1 =>n=2 (tm)
n-1=-1=>n=0 (tm)
n-1=3=>n=4 (tm)
n-1=-3=>n=-2 (loại) vì n ∈N
Vậy tại n={0;2;4) thì n+2 chia hết cho n-1
--------------------------------------...
b, (2n+7)/(n+1)=(2n+2+5)/(n+1)=[2(n+1)+5]/(...
2n+7 chia hêt cho n+1 khi 5/(n+1) là số nguyên
khi n+1 ∈ Ước của 5
khi n+1 ∈ {±1 ;±5} mà n ∈N => n ≥0 => n+1 ≥1
vậy n+1 ∈ {1;5}
Xét TH
n+1=1=>n=0 (tm)
n+1=5>n=4(tm)
Vâyj tại n={0;4) thì 2n+7 chia hêt scho n+1
d))Vì 3n chia hết cho 5-2n
=>2.3n+3(5-2n)=15 chia hết cho 5-2n
=>5-2n thuộc Ư(15)={±1;±3;±5;±15}
Mặt khác:5-2n≤5(do n≥0)
=>5-2n thuộc {-15;-5;-3;-1;1;3;5}
=>n thuộc {10;5;4;3;2;1;0}
)Vì 3n chia hết cho 5-2n
=>2.3n+3(5-2n)=15 chia hết cho 5-2n
=>5-2n thuộc Ư(15)={±1;±3;±5;±15}
Mặt khác:5-2n≤5(do n≥0)
=>5-2n thuộc {-15;-5;-3;-1;1;3;5}
=>n thuộc {10;5;4;3;2;1;0}
bạn có thể làm theo cách khác ko vì mình chưa học tới số nguyên hay ước và bội
a, n=2
b, n=8 hoặc n=2
c, n=4 hoặc n=7
d, n=1