cho parabol (p) : y=\(-\dfrac{x^2}{2}\)và đường thẳng y=\(-\dfrac{1}{2}x-1\) (d) trên cùng mặt tọa độ .a) vẽ parabol (P) và đường thẳng (d) trên cùng hệ trục tọa độ Oxy
b)tìm tọa độ giao điểm của (p) và (d) bằng phép tính
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xác định được ít nhất hai điểm phân biệt thuộc đường thẳng d. Chẳng hạn: A ( − 3 ; 0 ) ; B ( 0 ; 3 ) .
Xác định được đỉnh và ít nhất hai điểm thuộc (P) . Chẳng hạn : O ( 0 ; 0 ) ; C ( 6 ; 9 ) ; E ( − 6 ; 9 ) .
Đồ thị
2) Phương trình hoành độ giao điểm: 1 4 x 2 = x + 3 ⇔ 1 4 x 2 − x − 3 = 0 ⇔ x = − 2 hoặc x= 6
Tọa độ giao điểm là D ( − 2 ; 1 ) v à C ( 6 ; 9 ) .
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x^2+x-2=0\\y=-x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(x-1\right)=0\\y=-x+2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(-2;4\right);\left(1;1\right)\right\}\)
Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{4}x^2-mx-n=0\)
THeo đề, ta có:
\(\left\{{}\begin{matrix}m+n=2\\\left(-m\right)^2-4\cdot\left(-\dfrac{1}{4}\right)\cdot\left(-n\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\m^2-n=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\n^2-4n+4-n=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n\in\left\{1;4\right\}\\m\in\left\{1;-2\right\}\end{matrix}\right.\)
a
b:
PTHĐGĐ là:
x^2+x-2=0
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
=>y=4 hoặc y=1
a:
b: PTHĐGĐ là:
x^2+x-2=0
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
=>y=4 hoặc y=1
b,
Phương trình hoàng độ giao điểm của (p) và (d) là:
1
4
x
2
=
−
1
2
x
+
2
⇔
1
4
x
2
+
1
2
x
−
2
=
0
⇔
x
2
+
2
x
−
8
=
0
⇔
(
x
+
4
)
(
x
−
2
)
=
0
⇔
\orbr
{
x
=
−
4
x
=
2
x
=
−
4
⇒
y
=
4
x
=
2
⇒
y
=
1
Vậy tọa độ giao điểm của (p) và (d) là (-4;4) ; (2;1)
b: Khi m=2 thì \(y=\left(2\cdot2-1\right)x-2^2+2=3x-2\)
Phương trình hoành độ giao điểm là:
\(x^2-3x+2=0\)
=>x=2 hoặc x=1
Khi x=2 thì y=4
Khi x=1 thì y=1
c: Phương trình hoành độ giao điểm là:
\(x^2-\left(2m-1\right)x+m^2-2=0\)
\(\text{Δ}=\left(2m-1\right)^2-4\left(m^2-2\right)\)
\(=4m^2-4m+1-4m^2+8=-4m+9\)
Để (P) cắt (d) tại hai điểm phân biệt thì -4m+9>0
=>-4m>-9
hay m<9/4
a,
-4 | -2 | 0 | 2 | 4 | |
\(y=\frac{1}{4}x^2\) | 4 | 1 | 0 | 1 | 4 |
\(y=-\frac{1}{2}x+2\) | 4 | 3 | 2 | 1 | 0 |
Bạn tự vẽ ha.
b,
Phương trình hoàng độ giao điểm của (p) và (d) là:
\(\frac{1}{4}x^2=-\frac{1}{2}x+2\)
\(\Leftrightarrow\frac{1}{4}x^2+\frac{1}{2}x-2=0\Leftrightarrow x^2+2x-8=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=-4\\x=2\end{cases}}\)
\(x=-4\Rightarrow y=4\)
\(x=2\Rightarrow y=1\)
Vậy tọa độ giao điểm của (p) và (d) là (-4;4) ; (2;1)
Bạn tham khảo link này nha:
https://olm.vn/hoi-dap/detail/214561933532.html
Chúc bạn học tốt
Forever
b: Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{2}x^2=-\dfrac{1}{2}x-1\)
\(\Leftrightarrow-\dfrac{1}{2}x^2+\dfrac{1}{2}x+1=0\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Thay x=2 vào (P), ta được:
\(y=\dfrac{-2^2}{2}=-2\)
Thay x=-1 vào (P), ta được:
\(y=-\dfrac{1^2}{2}=-\dfrac{1}{2}\)