Tìm giá trị lớn nhất của \(A=\sqrt{5x-4}+\sqrt{12-5x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\sqrt{x-9}=t\), \(t\ge0\)\(\Rightarrow\)\(x=t^2+9\).
\(A=\frac{t}{5t^2+45}\Leftrightarrow A.5t^2-t+45A=0^{\left(1\right)}\)
Ta sẽ tìm điều kiện của A để phương trinhg (1) có nghiệm \(t\ge0\):
Để phương trình (1) có nghiệm: \(\Delta=1^2-4.5A.45A=1-900A^2\ge0\Leftrightarrow A^2\le\frac{1}{900}\Leftrightarrow-\frac{1}{30}\le A\le\frac{1}{30}\)
\(\hept{\begin{cases}t_1.t_2\ge0\\t_1+t_2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}9\ge0\\\frac{1}{5A}\ge0\end{cases}\Leftrightarrow}A>0}\)
Ta thấy giá trị lớn nhất của A là \(\frac{1}{30}\)khi x =18, giá trị nhỏ nhất của A là 0 khi x = 9.
b, đk: \(x\ge1,y\ge2,z\ge3\)
\(=>B=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)
đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{y-2}=b\\\sqrt{z-3}=c\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}x=a^2+1\\y=b^2+1\\z=c^2+1\end{matrix}\right.\)\(=>a\ge0,b\ge0,c\ge0\)
B trở thành \(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}+\dfrac{c}{c^2+1}\)
\(=\dfrac{a^{ }}{a^2+1}+\dfrac{a^2+1}{4}+\dfrac{b}{b^2+1}+\dfrac{b^2+1}{4}+\dfrac{c}{c^2+1}+\dfrac{c^2+1}{4}\)
\(-\left(\dfrac{a^2+b^2+c^2+3}{4}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}-\dfrac{a^2+b^2+c^2}{4}\)\(=0\)
dấu"=" xảy ra<=>\(a=0,b=0,c=0< =>x=1,y=2,z=3\)
Chắc bạn ghi nhầm đề, tìm GTLN mới đúng, chứ GTNN của các biểu thức này đều hiển nhiên bằng 0
\(A=\dfrac{3.\sqrt{x-9}}{15x}\le\dfrac{3^2+x-9}{30x}=\dfrac{1}{30}\)
\(A_{max}=\dfrac{1}{30}\) khi \(x=18\)
\(B=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}=\dfrac{1.\sqrt{x-1}}{x}+\dfrac{\sqrt{2}.\sqrt{y-2}}{\sqrt{2}y}+\dfrac{\sqrt{3}.\sqrt{z-3}}{\sqrt{3}z}\)
\(B\le\dfrac{1+x-1}{2x}+\dfrac{2+y-2}{2\sqrt{2}y}+\dfrac{3+z-3}{2\sqrt{3}z}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(2;4;6\right)\)
Áp dụng bđt:\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) ta có:
\(A=\sqrt{5x-4}+\sqrt{12-5x}\ge\sqrt{5x-4+12-5x}=\sqrt{8}\)
Dấu "=" xảy ra khi:\(\left(5x-4\right)\left(12-5x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{12}{5}\end{matrix}\right.\)
lớn nhất mà cha