K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{a) }\dfrac{2x+1}{x^2+1}\)

NV
5 tháng 4 2021

a.

\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)

Dấu "=" xảy ra khi \(x=2013\)

b.

\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)

\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)

\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)

\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)

5 tháng 4 2021

em cảm ơn ạ

23 tháng 5 2023

Biểu thức nào em?

24 tháng 5 2023

cả hai ạ

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

23 tháng 11 2021

\(\left|2x-1\right|+3\ge3\Leftrightarrow\dfrac{3+\left|2x-1\right|}{14}\ge\dfrac{3}{14}\)

Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)

\(\dfrac{-4x^2+4x}{15}=\dfrac{-4x^2+4x-1+1}{15}=\dfrac{-\left(2x-1\right)^2+1}{15}\)

Ta có \(-\left(2x-1\right)^2+1\le1\Leftrightarrow\dfrac{-\left(2x-1\right)^2+1}{15}\le\dfrac{1}{15}\)

Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)

2 tháng 6 2017

d/tìm Min:

D=\(\dfrac{4x+3}{x^2+1}\)=\(\dfrac{x^2+4x+4-\left(x^2+1\right)}{x^2+1}\)=\(\dfrac{\left(x+2\right)^2}{x^2+1}\)-\(\dfrac{x^2+1}{x^2+1}\)=\(\dfrac{\left(x+2\right)^2}{x^2+1}\)-1>=-1

=>Min D=-1.Dấu = xảy ra khi x=-2

TÌM Max:

D=\(\dfrac{4x+3}{x^2+1}\)=\(\dfrac{4\left(x^2+1\right)-\left(4x^2-4x+1\right)}{x^2+1}\)=4-\(\dfrac{\left(2x-1\right)^2}{x^2+1}\)=<4

=>Max D=4.Dấu = xảy ra khi x=\(\dfrac{1}{2}\)

các câu kia tương tự nha bạn.chúc bạn học tốthihi

2 tháng 6 2017

Rảnh rỗi sinh nông nỗi , tui lm câu a nha!

a) A = \(\dfrac{2x-1}{x^2+2}\) = \(\dfrac{\left(x^2+2x+1\right)-\left(x^2+2\right)}{x^2+2}\)

= \(\dfrac{\left(x+1\right)^2}{x^2+2}-\dfrac{x^2+2}{x^2+2}\) = \(\dfrac{\left(x+1\right)^2}{x^2+2}\) \(-1\)

\(x^2+2>0\) với mọi x => \(\dfrac{\left(x+1\right)^2}{x^2+2}\) >= 0 với mọi x

=> Dấu = xảy ra <=> x + 1 = 0 => x = -1

=> GTNN của A = -1 khi x = -1

30 tháng 8 2023

\(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)

vì \(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0,\forall x\inℝ\)

\(\Rightarrow B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{4}{9}x-\dfrac{2}{15}=0\Rightarrow\dfrac{4}{9}x=\dfrac{2}{15}\Rightarrow x=\dfrac{9}{15}\)

Vậy \(GTLN\left(B\right)=3\left(tạix=\dfrac{9}{15}\right)\)

30 tháng 8 2023

\(A=\left(2x+\dfrac{1}{3}\right)^4-1\)

vì \(\left(2x+\dfrac{1}{3}\right)^4\ge0,\forall x\inℝ\)

\(\Rightarrow A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)

Dấu "=" xảy ra khi và chỉ khi

\(2x+\dfrac{1}{3}=0\Rightarrow2x=-\dfrac{1}{3}\Rightarrow x=-\dfrac{1}{6}\)

\(\Rightarrow GTNN\left(A\right)=-1\left(tạix=-\dfrac{1}{6}\right)\)

21 tháng 7 2021

`A=(2x)^2+2.2x.1+1^2+1=(2x+1)^2+1`

`=> A_(min)=1 <=>x=-1/2`

`B=(\sqrt2x)^2-2.\sqrt2 x . \sqrt2/2 + (\sqrt2/2)^2 + 1/2`

`=(\sqrt2x-\sqrt2/2)^2+1/2`

`=> B_(min)=1/2 <=> x=1/2`

`C=-(x^2-2.x.3+3^2+6)=-(x-3)^2-6`

`=> C_(max)=-6 <=> x=3`

2 tháng 1 2018

\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)

\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)

Min A=-2/3 khi x=2

3 tháng 1 2018

\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)

\(\Rightarrow C\le2\)

Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)

Vậy Min C = 2 kjhi x = -2

Tìm GTLN - GTNN của các biểu thức ?* bài 1: Tìm GTNN: a) A= (x - 5)² + (x² - 10x)² - 24 b) B= (x - 7)² + (x + 5)² - 3 c) C= 5x² - 6x +1 d) D= 16x^4 + 8x² - 9 e) A= (x + 1)(x - 2)(x - 3)(x - 6) f) B= (x - 2)(x - 4)(x² - 6x + 6) g) C= x^4 - 8x³ + 24x² - 8x + 25 h) D= x^4 + 2x³ + 2x² + 2x - 2 i) A= x² + 4xy + 4y² - 6x – 12y +4 k) B= 10x² + 6xy + 9y² - 12x +15 l) C= 5x² - 4xy + 2y² - 8x – 16y +83 m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 *...
Đọc tiếp

Tìm GTLN - GTNN của các biểu thức ?

* bài 1: Tìm GTNN: 
a) A= (x - 5)² + (x² - 10x)² - 24 
b) B= (x - 7)² + (x + 5)² - 3 
c) C= 5x² - 6x +1 
d) D= 16x^4 + 8x² - 9 

e) A= (x + 1)(x - 2)(x - 3)(x - 6) 
f) B= (x - 2)(x - 4)(x² - 6x + 6) 
g) C= x^4 - 8x³ + 24x² - 8x + 25 
h) D= x^4 + 2x³ + 2x² + 2x - 2 

i) A= x² + 4xy + 4y² - 6x – 12y +4 
k) B= 10x² + 6xy + 9y² - 12x +15 
l) C= 5x² - 4xy + 2y² - 8x – 16y +83 

m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 

* Bài 2: Tìm GTLN: 
a) M= -7x² + 4x -12 
b) N= -16x² - 3x +14 

c) M= -x^4 + 4x³ - 7x² + 12x -5 
d) N= -(x² + x – 2) (x² +9x+18) +27 

* Bài 3: 
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y² 
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y² 
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³ 

* Bài 4: Tìm GTLN và GTNN của các biểu thức: 
1) A = (3 - 4x)/(x² + 1) 
2) B= (8x + 3)/(4x² + 1) 
3) C= (2x+1)/(x²+2)

0
28 tháng 2 2021

 4-3=2( dân chơi mới hiểu)

22 tháng 6 2021

Chắc là viết thiếu số "1" đấy, sợ lớp 11 còn chưa làm được cơ

 

30 tháng 12 2021

a: \(A\ge1\forall x\)

Dấu '=' xảy ra khi x=3/4