K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2017

\(\dfrac{6x-14}{13}=\dfrac{5y+9}{11}\Leftrightarrow11\left(6x-14\right)=13\left(5y+9\right)\)

\(\Rightarrow66x-154=65y+117\)

\(\Rightarrow66x=65y+117+154\)

\(\Rightarrow66x=65y+271\left(1\right)\)

Từ \(3x-2y=19\Leftrightarrow66x-44y=418\Leftrightarrow66x=44y+418\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) ta có:

\(65y+271=44y+418\)

Tới đây bí T^T bucminhMong A Hung đừng đánh e zì tội ăn cắp bản quyền :))

19 tháng 11 2017

\(\frac{6x-14}{13}=\frac{5y+9}{11}\)

\(\Rightarrow\left(6x-14\right).11=\left(5y+9\right).13\)

\(\Rightarrow66x-154=65y+117\)

\(\Rightarrow66x-65y=117+154\)

\(\Rightarrow66x-65y=271\)

Ta có 6x−1413 =5y+911  và 3x−2y=19

6x−1413 =5y+911 

⇒(6x−14).11=(5y+9).13

⇒66x−154=65y+117

⇒66x−65y=117+154

24 tháng 5 2018

6x - 14 / 13 = 5y + 9 / 11 => ( 6x - 14 ) . 11 = ( 5y + 9 ) . 13

                                     =>  66x - 154 = 65y + 117

                                     => 66x - 65y = 154 + 117 

                                     => 66x - 65y = 271

24 tháng 5 2018

Ta có \(\frac{6x-14}{13}=\frac{5y+9}{11}\)

=> \(11\left(6x-14\right)=13\left(5y+9\right)\)

=> \(66x-154=65y+117\)

=> \(66x-65y=117+154\)

=> \(66x-65y=271\)(1)

và \(3x-2y=19\)(2)

Trừ (1) với (2), ta có:

\(63x-63y=252\)

=> \(63\left(x-y\right)=252\)

=> \(x-y=\frac{252}{63}\)

=> \(x-y=4\)

=> x = 4 + y (3)

Thế (3) vào (2), ta có:

\(3\left(4+y\right)-2y=19\)

=> \(12+3y-2y=19\)

=> \(12+y=19\)

=> \(y=7\)

=> \(x=4+7=11\)

Vậy \(\hept{\begin{cases}x=11\\y=7\end{cases}}\)thì thoả mãn điều kiện \(\hept{\begin{cases}\frac{6x-14}{13}=\frac{5y+9}{11}\\3x-2y=19\end{cases}}\).

Bài 1: 

Ta có: \(3x=2y\)

nên \(\dfrac{x}{2}=\dfrac{y}{3}\)

mà x+y=-15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)

Vậy: (x,y)=(-6;-9)

Bài 2: 

a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x+y-z=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)

Vậy: (x,y,z)=(40;30;50)

a: \(\dfrac{x}{6}=\dfrac{y}{-3}\)

mà x-y=27

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{6}=\dfrac{y}{-3}=\dfrac{x-y}{6-\left(-3\right)}=\dfrac{27}{9}=3\)

=>\(x=3\cdot6=18;y=-3\cdot3=-9\)

b: \(\dfrac{x}{8}=\dfrac{y}{1,5}\)

mà x-4y=-0,2

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{1,5}=\dfrac{x-4y}{8-4\cdot1,5}=\dfrac{-0.2}{2}=-0.1\)

=>\(x=-0,1\cdot8=-0,8;y=-0,1\cdot1,5=-0,15\)

c: \(\dfrac{x}{y}=\dfrac{11}{13}\)

=>\(\dfrac{x}{11}=\dfrac{y}{13}\)

mà 2x+3y=122

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{11}=\dfrac{y}{13}=\dfrac{2x+3y}{2\cdot11+3\cdot13}=\dfrac{122}{61}=2\)

=>\(x=2\cdot11=22;y=2\cdot13=26\)

d: \(\dfrac{x}{y}=\dfrac{5}{-3}\)

=>\(\dfrac{x}{5}=\dfrac{y}{-3}\)

mà 3x-2y=42

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{3x-2y}{3\cdot5-2\cdot\left(-3\right)}=\dfrac{42}{21}=2\)

=>\(x=2\cdot5=10;y=2\cdot\left(-3\right)=-6\)

e: 3x=5y

=>\(\dfrac{x}{5}=\dfrac{y}{3}\)

mà x-y=10,2(vì y-x=-10,2)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{10.2}{2}=5.1\)

=>\(x=5,1\cdot5=25,5;y=5,1\cdot3=15,3\)

21 tháng 8 2017

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Rightarrow x+2004=0\Rightarrow x=-2004\)

21 tháng 8 2017

a, \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

Do \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

Vậy x = -1

b, \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\)

\(\Rightarrow x+2004=0\Rightarrow x=-2004\)

Vậy...

16 tháng 12 2022

f: \(=\dfrac{5x-3-x+3}{4x^2y}=\dfrac{4x}{4x^2y}=\dfrac{1}{xy}\)

g: \(=\dfrac{3x+10-x-4}{x+3}=\dfrac{2x+6}{x+3}=2\)

h: \(=\dfrac{4-2+x}{x-1}=\dfrac{x+2}{x-1}\)

n: \(=\dfrac{3x-x+6}{x\left(x+3\right)}=\dfrac{2\left(x+3\right)}{x\left(x+3\right)}=\dfrac{2}{x}\)

p: \(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}=0\)

k: \(=\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{-6}{x^2-4}\)

m: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)

7 tháng 3 2017

a) Ta có:

(x - 1)5 = - 243

=> (x - 1)5 = (-3)5

=> x - 1 = - 3

=> x = -3 + 1

=> x = -2

Vậy x = -2

b) Ta có:

\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)

\(\Rightarrow\left(x+2\right).\dfrac{1}{11}+\left(x+2\right).\dfrac{1}{12}+\left(x+2\right).\dfrac{1}{13}=\left(x+2\right).\dfrac{1}{14}+\left(x+2\right).\dfrac{1}{15}\)

=> \(\left(x+2\right).\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}\right)=\left(x+2\right).\left(\dfrac{1}{14}+\dfrac{1}{15}\right)\)

=> \(\left(x+2\right).\dfrac{431}{1716}=\left(x+2\right).\dfrac{29}{210}\)

=> \(\left(x+2\right).\dfrac{431}{1716}-\left(x+2\right).\dfrac{29}{210}=0\)

=> (x + 2).(\(\dfrac{431}{1716}-\dfrac{29}{210}\)) = 0

mà \(\dfrac{431}{1716}-\dfrac{29}{210}\) \(\ne\) 0

=> x + 2 = 0

=> x = -2

Vậy x = -2

c) Ta có :

\(\left|3x-2\right|+5x=4x-10\)

=> \(\left|3x-2\right|=4x-5x-10\)

=> \(\left|3x-2\right|=-x-10\)

=> 3x - 2 = -x - 10

hoặc 3x - 2 = -(-x -10)

*) Nếu 3x - 2 = -x - 10

=> 3x + x = -10 + 2

=> 4x = -8

=> x = -2

*) Nếu 3x - 2 = -(-x -10)

=> 3x - 2 = x +10

=> 3x - x = 10 + 2

=> 2x = 12

=> x = 6

Vậy x = -2 hoặc x = 6

7 tháng 3 2017

Nguyễn Huy TúNguyễn Huy Thắngsoyeon_Tiểubàng giảiHoàng Thị Ngọc AnhAkai Haruma giúp mình bài này với

10 tháng 6 2017

Có:

\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)

\(\Leftrightarrow\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}-\dfrac{x+2}{14}-\dfrac{x+2}{15}=0\)

\(\Leftrightarrow\left(x+2\right)\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)=0\)

Dấu "=" xảy ra:

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}=0\end{matrix}\right.\)

\(\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)\ne0\)

\(\Leftrightarrow x-2=0\)

\(\Rightarrow x=0+2=2\)

Vậy \(x=2\).

Học tốt!vui

11 tháng 6 2017

\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)

\(\Rightarrow\left(\dfrac{1}{11}+\dfrac{1}{12}\right)\left(x+2\right)+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)

\(\Rightarrow\dfrac{23\left(x+2\right)}{132}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)

\(\Rightarrow\left(\dfrac{23}{132}+\dfrac{1}{13}\right)\left(x+2\right)=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)

\(\Rightarrow\dfrac{431\left(x+2\right)}{1716}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)

\(\Rightarrow\dfrac{431\left(x+2\right)}{1716}=\left(\dfrac{1}{14}+\dfrac{1}{15}\right)\left(x+2\right)\)

\(\Rightarrow\dfrac{431\left(x+2\right)}{1716}=\dfrac{29\left(x+2\right)}{210}\)

\(\Rightarrow\dfrac{431\left(x+2\right)}{1716}-\dfrac{29\left(x+2\right)}{210}=0\)

\(\Rightarrow\left(\dfrac{431}{6.286}-\dfrac{29}{6.35}\right)\left(x+2\right)=0\)

\(\Rightarrow\dfrac{1}{6}\left(\dfrac{431}{286}-\dfrac{29}{35}\right)\left(x+2\right)=-2\)