K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2017

Đây nhé: https://olm.vn/hoi-dap/question/77888.html

14 tháng 7 2018

khó quá, không giải được

14 tháng 7 2018

Em không chắc lắm

\(ĐKCĐ:a+b\ne0;a+c\ne0;b+c\ne0\)

\(\frac{x-ab}{a+b}+\frac{c-ac}{a+c}+\frac{x-bc}{b+c}=a+b+c\) (1)

\(\Leftrightarrow\left(\frac{x-ab}{a+b}-c\right)+\left(\frac{x-ac}{a+c}-b\right)+\left(\frac{x-bc}{b+c}-a\right)=0\)

\(\Leftrightarrow\frac{x-ab-ac-bc}{a+b}+\frac{x-ac-ab-bc}{a+c}+\frac{x-bc-ab-ac}{b+c}=0\)

\(\Leftrightarrow\left(x-ab-bc-ac\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=0\)

Phương trình (1) vô số nghiệm khi và chỉ khi \(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=0\) (2)

Ví dụ ta chọn a = 1 ; b = 1. Để (2) xảy ra ta chọn c sao cho:

\(\frac{1}{2}+\frac{1}{1+c}+\frac{1}{1+c}=0\Leftrightarrow\frac{2}{1+c}=\frac{1}{2}\Leftrightarrow c=-5\)

Vậy phương trình (1) vô số nghiệm chẳng hạn như a = 1; b = 1; c = -5

P/S: Em làm còn nhiều sai sót, mong các anh chị bỏ qua ạ

1 tháng 1 2017

ĐKXĐ : \(a+b\ne0;a+c\ne0;b+c\ne0.\)

Từ \(\left(1\right)\Leftrightarrow\left(\frac{x-ab}{a+b}-c\right)+\left(\frac{x-ac}{a+c}-b\right)+\left(\frac{x-bc}{b+c}-a\right)=0\)

\(\Leftrightarrow\frac{x-ab-ac-bc}{a+b}+\frac{x-ac-ab-bc}{a+c}+\frac{a-bc-ab-ac}{b+c}=0\)

\(\Leftrightarrow\left(x-ab-bc-ca\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=0\)

\(\left(1\right)\) có vô số nghiệm \(\Leftrightarrow\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=0.\left(2\right)\)

Chẳng hạn ta chọn \(a=1,b=1.\)Để ( 2 ) xảy ra ta chọn c sao cho :

\(\frac{1}{2}+\frac{1}{1+c}+\frac{1}{1+c}=0\Leftrightarrow\frac{2}{1+c}=-\frac{1}{2}\Leftrightarrow c=-5.\)

Như vậy \(\left(1\right)\) có vô số nghiệm , chẳng hạn khi \(a=1,b=1,c=-5.\)

2 tháng 1 2017

....................................................................................................................................................................................................................................

2 tháng 4 2017

thiếu giả thiết a,b,c khác 0

1 tháng 2 2017

Giải

Điều kiện xác định phương trình:

\(a+b\ne0\) ; \(a+c\ne0\) ; \(b+c\ne0\)

\(\frac{x-ab}{a+b}+\frac{x-ac}{a+c}+\frac{x-bc}{b+c}=a+b+c\)

\(\Leftrightarrow\left(\frac{x-ab}{a+b}-c\right)+\left(\frac{x-ac}{a+c}-b\right)+\left(\frac{x-bc}{b+c}-a\right)=0\)

\(\Leftrightarrow\frac{x-ab-ac-bc}{a+b}+\frac{x-ac-cb-bc}{a+c}+\frac{x-bc-ab-ac}{b+c}=0\)

\(\Leftrightarrow\left(x-ab-bc-ca\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=0\)

\(\Rightarrow\) Phương trình có vô số nghiệm \(\Leftrightarrow\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=0\)

Chẳng hạn ta chọn a = 1 ; b = 1. Để \(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=0\) xảy ra ta chọn c sao cho:

\(\frac{1}{2}+\frac{1}{1+c}+\frac{1}{1+c}=0\Leftrightarrow\frac{2}{1+c}=\frac{-1}{2}\Leftrightarrow c=-5\)

Như vậy phương trình có vô số nghiệm, chẳng hạn khi a = 1 ; b = 1 ; c = -5