Giải phương trình
\(\dfrac{x-a}{a+b}+\dfrac{x-b}{a-b}=\dfrac{2ab}{b^2-a^2}\) ( a,b là hằng)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ne b;x\ne c\)
Phương trình tương đương:
\(\dfrac{2}{b-x}\left(\dfrac{1}{a}-\dfrac{1}{b}\right)=\dfrac{1}{c-x}\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\)
TH1: Nếu \(a=b\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}\Rightarrow\) pt tương đương \(0=0\) \(\Rightarrow\) đúng với mọi x
TH2: nếu \(a\ne b\), chia cả 2 vế cho \(\dfrac{1}{a}-\dfrac{1}{b}\) ta được:
\(\dfrac{2}{b-x}=\dfrac{1}{c-x}\Leftrightarrow2c-2x=b-x\Leftrightarrow x=2c-b\)
ĐKXĐ: x\(\ne3,x\ne-3\)
\(\Rightarrow\left(x-a\right)\left(a-3\right)+\left(x+3\right)\left(a+3\right)=-6a\)
\(\Leftrightarrow xa-3x-a^2+3a+ax+3x+3a+3=-6a\)
\(\Leftrightarrow2ax-a^2+12a+3=0\) \(\Leftrightarrow2ax=a^2-12a-3\Leftrightarrow x=\dfrac{a^2}{2}-6a-\dfrac{3}{2}\)(TM)
Vậy...
\(\dfrac{1}{a+b-x}=\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{x}\\ ĐKXĐ:x\ne0;x\ne-\left(a+b\right)\\ \Rightarrow\dfrac{1}{a+b-x}+\dfrac{1}{x}=\dfrac{1}{a}+\dfrac{1}{b}\\ \Rightarrow\dfrac{x}{x\left(a+b-x\right)}+\dfrac{a+b-x}{x\left(a+b-x\right)}=\dfrac{b}{ab}+\dfrac{a}{ab}\\ \Rightarrow\dfrac{x+a+b-x}{x\left(a+b-x\right)}=\dfrac{b+a}{ab}\\ \Rightarrow\dfrac{a+b}{x\left(a+b-x\right)}=\dfrac{b+a}{ab}\)
+) Với \(a\ne-b\Rightarrow x\left(a+b-x\right)=ab\)
\(\Leftrightarrow ax+bx-x^2=ab\\ \Leftrightarrow ax-x^2=ab-bx\\ \Leftrightarrow x\left(a-x\right)=b\left(a-x\right)\\ \Leftrightarrow x\left(a-x\right)-b\left(a-x\right)=0\\ \Leftrightarrow\left(x-b\right)\left(a-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-b=0\\x-a=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=b\\x=a\end{matrix}\right.\)
Khi đó : \(\left\{{}\begin{matrix}a\ne0\\a\ne-\left(a+b\right)\\b\ne0\\b\ne-\left(a+b\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\a\ne-a-b\\b\ne0\\b\ne-a-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\2a\ne-b\\b\ne0\\2b\ne-a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\a\ne-\dfrac{b}{2}\\b\ne0\\b\ne-\dfrac{a}{2}\end{matrix}\right.\)
+) Với \(a=-b\Rightarrow0=0\left(nghiệm\text{ }đúng\text{ }\forall x\right)\)
\(\Rightarrow S=R\)
Vậy với \(a\ne-b;a\ne0;b\ne0;a\ne-\dfrac{b}{2};b\ne-\dfrac{a}{2}\), pt có 2 nghiệm \(x=b;x=a\)
Với \(a=-b\), pt vô số nghiệm
a: \(A=\dfrac{1}{2a-1}\cdot\sqrt{5a^2}\cdot\left|2a-1\right|\)
\(=\dfrac{2a-1}{2a-1}\cdot a\sqrt{5}=a\sqrt{5}\)(do a>1/2)
b: \(A=\dfrac{\sqrt{x-1-2\sqrt{x-1}+1}}{\sqrt{x-1}-1}+\dfrac{\sqrt{x-1+2\sqrt{x-1}+1}}{\sqrt{x-1}+1}\)
\(=\dfrac{\left|\sqrt{x-1}-1\right|}{\sqrt{x-1}-1}+\dfrac{\sqrt{x-1}+1}{\sqrt{x-1}+1}\)
\(=\dfrac{\sqrt{x-1}-1}{\sqrt{x-1}-1}+1=1+1=2\)
c:
\(=\dfrac{a+b}{b^2}\cdot\dfrac{ab^2}{a+b}=a\)
d: Sửa đề: \(A=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(1+\sqrt{a}+a+\sqrt{a}\right)\cdot\left(\dfrac{1}{1+\sqrt{a}}\right)^2\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)
e:
\(A=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y}-1}{\left(x-1\right)^2}=\dfrac{1}{x-1}\)
f:
\(A=\sqrt{\dfrac{m}{\left(1-x\right)^2}\cdot\dfrac{4m\left(1-2x+x^2\right)}{81}}\)
\(=\sqrt{\dfrac{m}{\left(x-1\right)^2}\cdot\dfrac{4m\left(x-1\right)^2}{81}}\)
\(=\sqrt{\dfrac{4m^2}{81}}=\dfrac{2m}{9}\)