So sánh
\(2^{30}\)+\(3^{30}\)+ \(4^{30}\)và 3.\(24^{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(4^{30}=2^{30}.2^{30}=\left(2^3\right)^{10}.\left(2^2\right)^{15}=8^{10}.4^{15}>8^{10}.3^{15}>8^{10}.3^{11}\) (1)
Mà \(8^{10}.3^{11}=8^{10}.3^{10}.3=\left(8.3\right)^{10}.3=24^{10}.3\) (2)
Từ (1);(2)=> \(4^{30}>3.24^{10}\)
Vậy \(2^{30}+3^{30}+4^{30}>3.24^{10}\)
Cậu vô câu hỏi tương tự, tìm câu hỏi của Nhóm Winx là mãi mãi để xem đáp án của mình nhé
\(3.24^{10}=3^{11}.2^{30}< 4^{11}.2^{30}=2^{22}.2^{30}< \left(2^{30}+1\right).2^{30}=2^{30}+4^{30}< 2^{30}+3^{30}+4^{30}\)
Có 3.2410=3.(3.23)10=3.310.230=311.(22)15=311.415<415.415=430<230+330+430
Vậy 3.2410<230+330+430
Ta có : 3.24^10=3.(3.2^3)^10=3^11.2^30=3^11.4^15<4^15.4^15=4^30
⇒2^30+3^30+4^30>3.24^10