Tính A = 4+44+444+...+44...4 (10 chu so 4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$4^4+44^{44}+444^{444}+4444^{4444}$ chia hết cho $4$ (do bản thân mỗi số hạng đều chia hết cho $4$
$15$ chia $4$ dư $3$
$\Rightarrow n$ chia $4$ dư $3$.
Ta biết rằng 1 số chính phương khi chia 4 chỉ có thể có dư là $0$ hoặc $1$.
$\Rightarrow n$ không phải scp.
* Ta có công thức: Nếu số hạng là các chữ số n và có m số hạng:
n x [m x 100 + (m - 1) x 101 + (m - 2) x102 + ………. +2 x 10m-2 + 1 x 10m-1]
(Bạn nhớ công thức trên sẽ làm đc bài tập 1 cách dễ dàng)
Ta có:
B = 4 + 44 + 444 + 4444 + ... + 4444444444
B = 4(10.1 + 9.10 + 8.100 + 7.1000 + ... + 1.1000000000)
B = 4 (10 + 90 + 800 + 7000 + 60000 + 500000 + 4000000 + 30000000 + 200000000 + 1000000000)
B = 4 . 1234567900 = 4938271600
44 tận cùng là 6
4444 = (442)22 = 193622 = ...... 6 => 4444 tận cùng là 6
444444 = (4442)222 = 197136222 => 444444 tận cùng là 6
Ta có: 44 + 4444 + 444444 + 2007
= (...6) + (....6) + (..6) + 2007
= ..........5
Vậy tổng 44 + 4444 + 444444 là số chình phương ( Vì số chính phương có chữ số tận cùng là 0;1;4;5;6;9 )
Ta có: 4 đồng dư với 1(mod 3)
=>4^4 đồng dư với 1^4(mod 3)
=>4^4 đồng dư với 1(mod 3) (1)
44 đồng dư với 2(mod 3)
=>44^2 đồng dư với 2^2(mod 3)
=>44^2 đồng dư với 4(mod 3)
=>44^2 đồng dư với 1(mod 3)
=>(44^2)^22 đồng dư với 1^22(mod 3)
=>44^44 đồng dư với 1(mod 3) (2)
444 đồng dư với 0(mod 3)
=>444^444 đồng dư với 0^444(mod 3)
=>444^444 đồng dư với 0(mod 3) (3)
2007 đồng dư với 0(mod 3) (4)
Từ (1), (2), (3) và (4)
=>4^4+44^44+444^444+2007 đồng dư với 1+1+0+0(mod 3)
=>4^4+44^44+444^444+2007 đồng dư với 2(mod 3)
=>4^4+44^44+444^444+2007 chia 3 dư 2
Vì số chính phương chia 3 dư 0 hoặc 1
=>4^4+44^44+444^444+2007 không phải là số chính phương