Giải hệ phương trình
\(\left\{{}\begin{matrix}20\dfrac{y}{x^2}+11y=2009\\20\dfrac{z}{y^2}+11z=2009\\20\dfrac{x}{z^2}+11x=2009\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Áp dụng bđt Svac-xơ:
\(\dfrac{1}{x}+\dfrac{9}{y}+\dfrac{16}{z}\ge\dfrac{\left(1+3+4\right)^2}{x+y+z}\ge\dfrac{64}{4}=16>9\)
=> hpt vô nghiệm
c) Ở đây x,y,z là các số thực dương
Áp dụng cosi: \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=3xyz\)
Dấu = xảy ra khi \(x=y=z=\dfrac{3}{3}=1\)
Lời giải:
$x,y,z>0$ thì $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ mới xác định.
Áp dụng BĐT AM-GM:
$(x+y+z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})\geq 3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9$
Dấu "=" xảy ra khi $x=y=z$. Thay vào pt $(2)$:
$x^3=x^2+x+2$
$\Leftrightarrow x^3-x^2-x-2=0$
$\Leftrightarrow x^2(x-2)+x(x-2)+(x-2)=0$
$\Leftrightarrow (x^2+x+1)(x-2)=0$
Dễ thấy $x^2+x+1>0$ với mọi $x>0$ nên $x-2=0$
$\Rightarrow x=2$
Vậy hpt có nghiệm $(x,y,z)=(2,2,2)$
\(\left\{{}\begin{matrix}3x-7y=0\\\dfrac{20}{x+y}+\dfrac{20}{x-y}=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=7y\\20\left(\dfrac{1}{x+y}+\dfrac{1}{x-y}\right)=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{1}{x+y}+\dfrac{1}{x-y}=\dfrac{7}{20}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{1}{\dfrac{7y}{3}+y}+\dfrac{1}{\dfrac{7y}{3}-y}=\dfrac{7}{20}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{1}{\dfrac{10y}{3}}+\dfrac{1}{\dfrac{4y}{3}}=\dfrac{7}{20}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{3}{10y}+\dfrac{3}{4y}=\dfrac{7}{20}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{3}{2}\left(\dfrac{1}{5y}+\dfrac{1}{2y}\right)=\dfrac{7}{20}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{2}{10y}+\dfrac{5}{10y}=\dfrac{7}{30}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{7}{10y}=\dfrac{7}{30}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\10y=30\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7.3}{3}\\y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=3\end{matrix}\right.\)
ĐKXĐ: \(x\ne\pm y\)
Với điều kiện \(x\ne\pm y\) hệ phương trình đã cho
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)=5\left(x-y\right)\\\dfrac{20}{x+y}+\dfrac{20}{x-y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x+y}=\dfrac{2}{x-y}\\\dfrac{20}{x+y}+\dfrac{20}{x-y}=7\end{matrix}\right.\)
Đặt \(\dfrac{1}{x+y}=a;\dfrac{1}{x-y}=b\)
ta có hệ phương trình: \(\left\{{}\begin{matrix}5a=2b\\20a+20b=7\end{matrix}\right.\)
Giải hệ phương trình được \(a=\dfrac{1}{10};b=\dfrac{1}{4}\)
Thay vào hệ ta giải tìm \(x=7;y=3\)
tham khảo
https://hoc24.vn/hoi-dap/tim-kiem?id=165107&q=1%2Fx%201%2F%28y%20z%29%3D1%2F3%20%201%2Fy%201%28z%20x%29%3D1%2F4%20%201%2Fz%201%2F%28x%20y%29%3D1%2F5%20%20gi%E1%BA%A3i%20h%E1%BB%87%20ph%C6%B0%C6%A1ng%20tr%C3%ACnh%20%E1%BA%A1%20m%E1%BB%8Di%20ng%C6%B0%E1%BB%9Di%20gi%E1%BA%A3i%20d%C3%B9m%20em%20v%E1%BB%9Bi%20%E1%BA%A1#:~:text=2020%20l%C3%BAc%2013%3A53-,%E2%87%94,2,-%E2%87%92y%3D23
\(ĐK:x,y\ne0\\ HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=4\\\dfrac{2}{x}+\dfrac{3}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=2\\\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+1=2\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\left(tm\right)\)
\(ĐK:x\ne-1;y\ne2\\ HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y}{2-y}=-1\\\dfrac{x}{x+1}+\dfrac{2y}{2-y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0y=-2\left(vn\right)\\\dfrac{x}{x+1}+\dfrac{2y}{2-y}=2\end{matrix}\right.\Leftrightarrow x,y\in\varnothing\)
Đặt x/x+1=a
y/2-y=b
\(\Leftrightarrow\left\{{}\begin{matrix}a+2b=1\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-1\\a=2-b=2-\left(-1\right)=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3x+3\\y=y-2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)
Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại
Với pt sau:
Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm
Với \(x;y;z\ne0\)
Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3
Do đó:
\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)
Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)