Tính
\(A=a+2b+3c+4d\) biết \(a;b\) tỉ lệ theo 5 và 6;b và c tỉ lệ với 8 và 9,c và d tỉ lệ theo 3 và 2 và c hơn d là 54
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left\{{}\begin{matrix}2\widehat{B}=4\widehat{D}\\3\widehat{C}=4\widehat{D}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{B}=2\widehat{D}\\\widehat{C}=\dfrac{4}{3}\widehat{D}\end{matrix}\right.\)
Tứ giác ABCD có:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
\(\Rightarrow4\widehat{D}+2\widehat{D}+\dfrac{4}{3}\widehat{D}+\widehat{D}=360^0\)
\(\Rightarrow\widehat{D}\left(4+2+\dfrac{4}{3}+1\right)=360^0\)
\(\Rightarrow\widehat{D}.\dfrac{25}{3}=360^0\)
\(\Rightarrow\widehat{D}=360^0:\dfrac{25}{3}=43,2^0\)
\(TC:\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
\(\Rightarrow\widehat{A}+\dfrac{1}{2}\widehat{A}+\dfrac{1}{3}\widehat{A}+\dfrac{1}{4}\widehat{A}=360^0\)
\(\Rightarrow\widehat{A}=172.8^0\)
\(\widehat{D}=\dfrac{1}{4}\widehat{A}=\dfrac{1}{4}\cdot172.8=43.2^0\)
a,=(2a + b - 3c).(2a + b - 3c)
=4a\(^2\)+2ab-6ac+2ab+b\(^2\)-3bc-6ac-3cb+9c\(^2\)
=4a\(^2\)+b\(^2\)+9c\(^2\)+4ab
=2\(^2\).a\(^2\)+4ab+b\(^2\)+9c\(^2\)
=(2a+b)\(^2\)+9c\(^2\)( đáng lẽ chỗ này nó phải là -9c\(^2\) nhưng t ko ra đc )
b,=(a + 2b + 3c - 4d)(a + 2b + 3c - 4d)
=a\(^2\)+2ab+3ac-4ad+2ab+4b\(^2\)+6bc-8bd+3ac+6bc+9c\(^2\)-12cd-4ad-8bd-12cd+16d\(^2\)
=a\(^2\)+4b\(^2\)+9c\(^2\)+16d\(^2\)+4ab+6ac-8ad+12bc-16bd-24cd
=(a\(^2\)+4ab+4b\(^2\))+(9c\(^2\)-24cd+16d\(^2\))+6ac-8ad+12bc-16bd
=(a+2b)\(^2\)+(3c-4d)\(^2\)+2(3ac-4ad+6bc-8bd)
=(a+2b)\(^2\)+(3c-4d)\(^2\)+2[a(3c-4d)+2b(3c-4d)]
=(a+2b)\(^2\)+(3c-4d)\(^2\)+2(a+2b)(3c-4d)
khiếp bài dài nghoằng ra ý :(
a: \(\left(2a+b-3c\right)^2\)
\(=4a^2+b^2+9c^2+4ab-12ac-6bc\)
Vì d<5
=>4d>20 hay c<20
=>3c<60 hay b<60
Vì b<60
=>2b<120 hay a<120
Vậy giá trị lớn nhất của a là 119
Căn cứ vào tính chất của nước người ta chia hồ làm mấy loại?
A.2
B.3
C.4
D.5
Ta có :
\(\frac{a}{b}=\frac{5}{6}\Rightarrow\frac{a}{b}=\frac{20}{24}\Rightarrow\frac{a}{20}=\frac{b}{24}\)\(\left(1\right)\)
\(\frac{b}{c}=\frac{8}{9}\Rightarrow\frac{b}{c}=\frac{24}{27}\Rightarrow\frac{b}{24}=\frac{c}{27}\)\(\left(2\right)\)
\(\frac{c}{d}=\frac{3}{2}\Rightarrow\frac{c}{d}=\frac{27}{18}\Rightarrow\frac{c}{27}=\frac{d}{18}\)\(\left(3\right)\)
Từ ( 1 ) ; ( 2 ) ; ( 3 ) \(\Rightarrow\frac{a}{20}=\frac{b}{24}=\frac{c}{27}=\frac{d}{18}=\frac{d-c}{18-24}=\frac{54}{-6}=-9\)
\(\frac{a}{20}=-9\Rightarrow a=-9.20=-180\)
\(\frac{b}{24}=-9\Rightarrow b=-9.24=-216\)
\(\frac{c}{27}=-9\Rightarrow c=-9.27=-243\)
\(\frac{d}{18}=-9\Rightarrow d=-9.18=-162\)
\(\Rightarrow A=a+2b+3c+4d=-180+\left(-216\right).2+\left(-243\right).3+\left(-162\right).4\)
\(=-1989\)
a/5=b/6
=>a/20=b/24
b/8=c/9
=>b/24=c/27
c/3=d/2
=>c/27=d/18
=>a/20=b/24=c/27=d/18
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{20}=\dfrac{b}{24}=\dfrac{c}{27}=\dfrac{d}{18}=\dfrac{c-d}{27-18}=\dfrac{54}{9}=6\)
Do đó: a=120; b=144; c=162; d=108
\(A=a+2b+3c+4d=120+288+486+432=1326\)