K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2015

45=15 x 3 = 9 x 5

54 = 18 x 3 = 27 x 2 = 9 x 6

11 tháng 10 2015

45 = .15.. x3=9x..5.

54=18 x.3..= 27x.2.. = ..9. x 6

 

26 tháng 10 2018

      

       \(x^3-27x-54\)

\(=x^3-6x^2+6x^2-36x+9x-54\)

\(=x^2\left(x-6\right)+6x\left(x-6\right)+9\left(x-6\right)\)

\(=\left(x-6\right)\left(x^2+6x+9\right)=\left(x-6\right)\left(x+3\right)^2\)

       \(4x^3-13x^2+9x-18\)

\(=4x^3-12x^2-x^2+3x+6x-18\)

\(=4x^2\left(x-3\right)-x\left(x-3\right)+6\left(x-3\right)\)

\(=\left(x-3\right)\left(4x^2-x+6\right)\)

26 tháng 12 2021

Bạn thay x vào biểu thức rồi tính thôi

a)(x-10)2-x(x+80)

(x2-2x10+100)-x2-80x

=x2-20x+100-x2-80x=-100x+100 
khi x = 0.98 
ta có 
(-100*0.98)+100=-98+100=2
b)x3-9x+27x-27
 hình như là -27x :))

 

9 tháng 11 2021

\(a,\Leftrightarrow x^3-8-x^3-2x=12\Leftrightarrow-2x=20\Leftrightarrow x=-10\\ b,\Leftrightarrow x^2-6x+9-x^2+4=16\Leftrightarrow=-6x=3\Leftrightarrow x=-\dfrac{1}{2}\\ c,\Leftrightarrow x\left(x^2-9\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-6\right)+9\left(x-6\right)=0\\ \Leftrightarrow\left(x^2+9\right)\left(x-6\right)=0\\ \Leftrightarrow x=6\left(x^2+9>0\right)\)

15 tháng 10 2018

mày viết lại cái đề bài hộ tao cái

17 tháng 10 2018

lm heets cmnr

26 tháng 8 2023

\(1-27x^3\)

\(=1-\left(3x\right)^3\)

\(=\left(1-3x\right)\left(1+3x+9x^2\right)\)

\(---\)

\(x-3^3+27\)

\(=x-27+27=x\) 

\(---\)

\(27x^3+27x^2+9x+1\)

\(=\left(3x\right)^3+3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2+1^3\)

\(=\left(3x+1\right)^3\)

\(---\)

\(\dfrac{x^6}{27}-\dfrac{x^4y}{3}+x^2y^2-y^3\) (sửa đề)

\(=\left(\dfrac{x^2}{3}\right)^3-3\cdot\left(\dfrac{x^2}{3}\right)^2\cdot y+3\cdot\dfrac{x^2}{3}\cdot y^2-y^3\)

 \(=\left(\dfrac{x^2}{3}-y\right)^3\)

#Ayumu

26 tháng 8 2023

1-27x\(^3\)

=(1-3x)(1+3x+9x\(^2\)

a: \(\Leftrightarrow x^2\left(9x^2-4\right)=0\)

\(\Leftrightarrow x^2\left(3x-2\right)\left(3x+2\right)=0\)

hay \(x\in\left\{0;\dfrac{2}{3};-\dfrac{2}{3}\right\}\)

b: \(\Leftrightarrow2x^4-4x^2+3x^2-6=0\)

\(\Leftrightarrow x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

d: \(\Leftrightarrow x^4-9x^2+6x^2-54=0\)

\(\Leftrightarrow x^2-9=0\)

=>x=3 hoặc x=-3

\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{6x-9}-\sqrt[3]{27x-54}}{\left(x-3\right)\left(x^2+3x-18\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\sqrt{6x-9}-x+x-\sqrt[3]{27x-54}}{\left(x-3\right)^2\left(x+6\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\dfrac{6x-9-x^2}{\sqrt{6x-9}+x}+\dfrac{x^3-27x+54}{x^2+x\cdot\sqrt[3]{27x-54}+\sqrt[3]{\left(27x-54\right)^2}}}{\left(x-3\right)^2\left(x+6\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\dfrac{-\left(x-3\right)^2}{\sqrt{6x-9}+x}+\dfrac{\left(x-3\right)^2\left(x+6\right)}{x^2+x\cdot\sqrt[3]{27x-54}+\sqrt[3]{\left(27x-54\right)^2}}}{\left(x-3\right)^2\left(x+6\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\dfrac{-1}{\sqrt{6x-9}+x}+\dfrac{\left(x+6\right)}{x^2+x\cdot\sqrt[3]{27x-54}+\sqrt[3]{\left(27x-54\right)^2}}}{\left(x+6\right)}\)

\(=\dfrac{-\dfrac{1}{\sqrt{6\cdot3-9}+3}+\dfrac{3+6}{3^2+3\cdot\sqrt[3]{27\cdot3-54}+\sqrt[3]{\left(27\cdot3-54\right)^2}}}{3+6}\)

\(=\dfrac{-\dfrac{1}{3+3}+\dfrac{9}{9+3\cdot3+3^2}}{9}=\dfrac{-\dfrac{1}{6}+\dfrac{1}{3}}{9}=\dfrac{\dfrac{1}{6}}{9}=\dfrac{1}{54}\)

 

NV
7 tháng 1

Phương pháp đạo hàm ý em là định lý L'Hopital hả? Định lý L'Hopital là 1 phương pháp rất mạnh để giải các bài giới hạn dạng phân thức \(\dfrac{0}{0}\) hoặc \(\dfrac{\infty}{\infty}\), nhưng người ta hạn chế sử dụng khi xuất hiện căn thức (lý do là khi đạo hàm thì căn thức không những gọn đi mà còn "phình to" ra rất nhiều). Ưu điểm là nó khử dạng vô định rất nhanh chóng. Còn khi phân thức mà tử mẫu đều ko xuất hiện căn thức thì đó đúng là 1 pp mạnh tuyệt đối.

Định lý nó như sau: nếu \(f\left(x\right)\) và \(g\left(x\right)\) cùng tiến tới 0 (hoặc \(+\infty\) hoặc \(-\infty\)) khi \(x\rightarrow a\) nào đó thì:

\(\lim\limits_{x\rightarrow a}\dfrac{f\left(x\right)}{g\left(x\right)}=\lim\limits_{x\rightarrow a}\dfrac{f'\left(x\right)}{g'\left(x\right)}\)

Bài này có cả căn bậc 3 nên đạo hàm ko được đẹp lắm. Tự hiểu là giới hạn nha, vì công thức latex gõ giới hạn hơi phức tạp, tốn thời gian lắm, gõ 1 biểu thức thôi thì lẹ gấp chục lần:

\(\dfrac{\sqrt[]{6x-9}-\sqrt[3]{27x-54}}{\left(x-3\right)\left(x^2+3x-18\right)}=\dfrac{\dfrac{3}{\sqrt[]{6x-9}}-\dfrac{1}{\sqrt[3]{\left(x-2\right)^2}}}{x^2+3x-18+\left(x-3\right)\left(2x+3\right)}\)

Vậy là mất dạng vô định, thay số là xong.

Còn thêm bớt liên hợp thì khá đơn giản, do \(x\rightarrow3\) nên ta thay \(x=3\) vào 1 căn thức bất kì, ví dụ căn đầu, được \(\sqrt{6.3-9}=3\), vậy ta chỉ cần thêm bớt 3 vào tử số rồi liên hợp là được:

\(=\dfrac{\left(\sqrt[]{6x-9}-3\right)+\left(3-3\sqrt[3]{x-2}\right)}{\left(x-3\right)\left(x^2+3x-18\right)}\)

3 tháng 2 2017

a) \(x^3-7x+6=x^3+3x^2-x^2-3x-2x^2-6x+2x+6\)

=\(x^2\left(x+3\right)-x\left(x+3\right)-2x\left(x+3\right)+2\left(x+3\right)\)

=\(\left(x+3\right)\left(x^2-x-2x+2\right)\)

=\(\left(x+3\right)\left(x-2\right)\left(x-1\right)\)

=\(\left\{\begin{matrix}x+3=0=>x=-3\\x-2=0=x=2\\x-1=0=>x=1\end{matrix}\right.\)

3 tháng 2 2017

\(b...x^3-19x+30=0\)

\(=>x^3+5x^2-2x^2-10x-3x^2-15x+6x+30=0\)

=>\(x^2\left(x+5\right)-2x\left(x+5\right)-3x\left(x+5\right)+6\left(x+5\right)=0\)

=>\(\left(x+5\right)\left(x^2-2x-3x+6\right)=0\)

=>\(\left(x+5\right)\left(x-3\right)\left(x-2\right)=0\)

=>\(\left\{\begin{matrix}x-3=0=>x=3\\x-2=0=>x=2\\x+5=0=>x=-5\end{matrix}\right.\)

Vậy x=-5;2;3