từ các số 0 1 2 3 4 5 có bao nhiêu số tự nhiên 4 chữ số mà chữ số 1 2 luôn đứng cạnh nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Ta xem 3 chữ số 1; 2; 3 đứng cạnh nhau là một phần tử X.
Chọn ra 3 chữ số còn lại có C 4 3 cách chọn.
Xếp phần tử X và 3 chữ số vừa chọn ta có: 4! Cách.
Các chữ số 1;2;3 trong X có thể hoán vị cho nhau có: 3! Cách.
Vậy có tất cả C 4 3 . 4 ! . 3 ! = 576 (số)
Chọn C
Số cách chọn 3 số bất kì từ tập {4;5;6;7} là C 3 4
Do 1, 2, 3 luôn đứng cạnh nhau nên ta xem chúng như một phần tử.
Số các số tự nhiên có sáu chữ số đôi một khác nhau trong đó 1, 2, 3 luôn đứng cạnh nhau là 4!. C 3 4 .3! = 576 số.
gọi số tm yêu cầu là \(\overline{abcde}\)
a)Th1 giả sử abc,abd,abe,acd,ade,ace=1,2,3=> 2 số còn lại có 5.4 cách chọn=> có tất cả 6.3!.4.5=720 số
Th2 giả sử bcd=1,2,3;cde=1,2,3;bce=1,2,3,bde=1,2,3=>a khác 0=>a có 4 cách chọn và số còn lại có 4 cách chọn=>có tất cả 4.4.3!.4=384 cách
=> có tất cả 720+384 =1104 cách chọn số tm
Ta có mỗi phân tử của không gian mẫu là 1 số có dạng abcd ( a≠b≠c≠d a≠0)
a có 5cách chọn, b có 5 cách chọn , c có 4 cách chọn , d có 3 cách chọn -> nΩ = 300 phần tử.
-Gọi chữ số đó có dạng abcd ( gạch trên đầu)
-số đó có 1và 2 luôn đứng cạnh nhau.
-Th1: a=1 b=2
C có 4 cách chọn, d có 3 cách chọn -> có 12 số
TH2 a= 2 b= 1
C có 4cách chọn, d có 3 cách chọn. Vậy có 12 số
TH3 a≠ 1,3 a có 3 cách ( không tính 0 , 0 không thể đứng đầu)
- có 2 cách chọn vị trí có chữ số 1,2 đứng liền nhau là cd hoặc bc. Nên có 2cách. Vị trí còn lại có 3cách.-> 3×2×2×3= 36.
-> nA= 12+12+36= 60
->pA= 60/300 = 1/5