K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2015

\(\frac{2n-3}{n-2}=\frac{2n-4+1}{n-2}=2\frac{1}{n-2}\)

Để 2n-2 chi hết cho n-2 => 1 chi hết cho n-2 => n= 3

18 tháng 10 2015

5 n chia hết cho n

=>3n chia hết cho n

=> n=1 haowcj 3

30 tháng 9 2015

5n+13 chia het cho n

=>13 chia het cho n

=>n thuoc Ư cua 13

Ư(13)=1;-1;13;-13

vậy n=1;-1;13;-13

16 tháng 10 2015

Ta có: 5n+10 chia hết cho n-2

=>5n-10+10+10 chia hết cho n-2

=>5.(n-2)+20 chia hết cho n-2

=>20 chia hết cho n-2

=>n-2=Ư(20)=(1,2,4,5,10,20)

=>n=(3,4,6,7,12,22)

Vậy n=3,4,6,7,12,22

10 tháng 10 2023

a) 2n + 11 chia hết cho n + 3 

⇒ 2n + 6 + 5 chia hết cho n + 3

⇒ 2(n + 3) + 5 chia hết cho n + 3

⇒ 5 chia hết cho n + 3

⇒ n + 3 ∈ Ư(5) = {1; -1; 5; -5} 

⇒ n ∈ {-2; -4; 2; -8}

Mà n là số tự nhiên

⇒ n ∈ {2} 

b) n + 5 chia hết cho n - 1

⇒ n - 1 + 6 chia hết cho n - 1 

⇒ 6 chia hết cho n - 1 

⇒ n - 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}

⇒ n ∈ {2; 0; 3; -1; 4; -2; 7; -5} 

Mà n là số tự nhiên

⇒ n ∈ {2; 0; 3; 4; 7} 

c) 3n + 10 chia hết cho n + 2

⇒ 3n + 6 + 4 chia hết cho n + 2

⇒ 3(n + 2) + 4 chia hết cho n + 2 

⇒ 4 chia hết cho n + 2

⇒ n + 2 ∈ Ư(4) = {1; -1; 2; -2; 4; -4} 

⇒ n ∈ {-1; -3; 0; -4; 2; -6}

Mà n là số tự nhiên

⇒ n ∈ {0; 2}

d) 2n + 7 chia hết cho 2n + 1 

⇒ 2n + 1 + 6 chia hết cho 2n + 1

⇒ 6 chia hết cho 2n + 1

⇒ 2n + 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6} 

⇒ n ∈ {0; -1; 1/2; -3/2; 1; -2; 5/2; -7/2}

Mà n là số tự nhiên

⇒ n ∈ {0; 1} 

4 tháng 10 2015

nè đồ lợn ,ắt lời bài nhà cô chứ gì lười thế cô dạy rùi mà

4 tháng 10 2015

2n + 3 chia hết cho n - 2

=> 2n - 4 + 7 chia hết   cho n - 2

n - 2 thuộc U(7) = {1;7}

n - 2 = 1 ; n = 3

n - 2 = 7 ; n = 9            

Bạn ơi, cái ý thứ 2 hình như đáp án là 6 thì phải, còn cách thình bày mình yếu lắm,đừng hỏi

Mình nhầm, là trình bày

8 tháng 5 2015

\(2n+7=\left(n+3\right)+\left(n+4\right)=\left(n+3\right)+\left(n+3\right)+1\)

\(Ta\) \(Co\)\(:\) \(\frac{\left(n+3\right)+\left(n+3\right)+1}{n+3}\)\(=2+\frac{1}{n+3}\)

\(De\) \(\left(2n+7\right)^._:\left(n+3\right)\) \(=>\)\(1chia\vec{ }het\vec{ }cho\vec{ }n+3\)

=>n+3 \(\in U_{\left(1\right)}\)

ta co : \(U_{\left(1\right)}\in\left(1;-1\right)\)

ta co bang :

n+31-1
n-2   -4     

vi n \(\in\)N

=>n khong co gia tri